Skip to main content

Research Group of Prof. Dr. Michael Feischl

This is a former research group of the institute. This page is no longer maintained.

Publications of this group

2018

  1. Improved efficiency of a multi-index FEM for computational uncertainty quantification. J. Dick, M. Feischl, and C. Schwab. arXiv preprint 1806.04159, 2018. BibTeX ArXiv
  2. Fast random field generation with H-matrices. M. Feischl, F. Y. Kuo, and I. H. Sloan. Numer. Math., 140(3):639–676, 2018. BibTeX DOI
  3. Sparse compression of expected solution operators. M. Feischl and D. Peterseim. arXiv preprint 1807.01741, 2018. BibTeX ArXiv
  4. Exponential convergence in H1H^1 of hp-FEM for Gevrey regularity with isotropic singularities. M. Feischl and C. Schwab. submitted, 2018. BibTeX SAM Report

2017

  1. Local inverse estimates for non-local boundary integral operators. M. Aurada, M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius. Math. Comp., 86(308):2651–2686, 2017. BibTeX DOI
  2. Optimal adaptivity for a standard finite element method for the Stokes problem. M. Feischl. arXiv preprint 1710.08289, 2017. BibTeX ArXiv
  3. Optimal adaptivity for non-symmetric FEM/BEM coupling. M. Feischl. arXiv preprint 1710.06082, 2017. BibTeX ArXiv
  4. Optimal additive Schwarz preconditioning for hypersingular integral equations on locally refined triangulations. M. Feischl, T. Führer, D. Praetorius, and E. P. Stephan. Calcolo, 54(1):367–399, 2017. BibTeX DOI
  5. Optimal preconditioning for the symmetric and nonsymmetric coupling of adaptive finite elements and boundary elements. M. Feischl, T. Führer, D. Praetorius, and E. P. Stephan. Numer. Methods Partial Differential Equations, 33(3):603–632, 2017. BibTeX DOI
  6. Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations. M. Feischl, G. Gantner, A. Haberl, and D. Praetorius. Numer. Math., 136(1):147–182, 2017. BibTeX DOI
  7. Existence of regular solutions of the Landau-Lifshitz-Gilbert equation in 3D with natural boundary conditions. M. Feischl and T. Tran. SIAM J. Math. Anal., 49(6):4470–4490, 2017. BibTeX DOI
  8. The eddy current–LLG equations: FEM-BEM coupling and a priori error estimates. M. Feischl and T. Tran. SIAM J. Numer. Anal., 55(4):1786–1819, 2017. BibTeX DOI

2016

  1. Efficient numerical computation of direct exchange areas in thermal radiation analysis. M. Feischl, T. Führer, M. Niederer, S. Strommer, A. Steinboeck, and D. Praetorius. Numerical Heat Transfer, Part B: Fundamentals, 69(6):511–533, 2016. BibTeX DOI
  2. Adaptive 2D IGA boundary element methods. M. Feischl, G. Gantner, A. Haberl, and D. Praetorius. Eng. Anal. Bound. Elem., 62:141–153, 2016. BibTeX DOI
  3. Adaptive boundary element methods for optimal convergence of point errors. M. Feischl, G. Gantner, A. Haberl, D. Praetorius, and T. Führer. Numer. Math., 132(3):541–567, 2016. BibTeX DOI
  4. An abstract analysis of optimal goal-oriented adaptivity. M. Feischl, D. Praetorius, and K. G. van der Zee. SIAM J. Numer. Anal., 54(3):1423–1448, 2016. BibTeX DOI

2015

  1. Energy norm based error estimators for adaptive BEM for hypersingular integral equations. M. Aurada, M. Feischl, T. Führer, M. Karkulik, and D. Praetorius. Appl. Numer. Math., 95:15–35, 2015. BibTeX DOI
  2. Stability of symmetric and nonsymmetric FEM-BEM couplings for nonlinear elasticity problems. M. Feischl, T. Führer, M. Karkulik, and D. Praetorius. Numer. Math., 130(2):199–223, 2015. BibTeX DOI
  3. Adaptive boundary element methods. M. Feischl, T. Führer, N. Heuer, M. Karkulik, and D. Praetorius. Arch. Comput. Methods Eng., 22(3):309–389, 2015. BibTeX DOI
  4. Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. Part II: Hyper-singular integral equation. M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius. Electron. Trans. Numer. Anal., 44:153–176, 2015. BibTeX
  5. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations. M. Feischl, G. Gantner, and D. Praetorius. Comput. Methods Appl. Mech. Engrg., 290:362–386, 2015. BibTeX DOI

2014

  1. HILBERT—a MATLAB implementation of adaptive 2D-BEM. M. Aurada, M. Ebner, M. Feischl, S. Ferraz-Leite, T. Führer, P. Goldenits, M. Karkulik, M. Mayr, and D. Praetorius. Numer. Algorithms, 67(1):1–32, 2014. BibTeX DOI
  2. Multiscale modeling in micromagnetics: existence of solutions and numerical integration. F. Bruckner, D. Suess, M. Feischl, T. Führer, P. Goldenits, M. Page, D. Praetorius, and M. Ruggeri. Math. Models Methods Appl. Sci., 24(13):2627–2662, 2014. BibTeX DOI
  3. Axioms of adaptivity. C. Carstensen, M. Feischl, M. Page, and D. Praetorius. Comput. Math. Appl., 67(6):1195–1253, 2014. BibTeX DOI
  4. Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems. M. Feischl, T. Führer, and D. Praetorius. SIAM J. Numer. Anal., 52(2):601–625, 2014. BibTeX DOI
  5. Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data. M. Feischl, M. Page, and D. Praetorius. J. Comput. Appl. Math., 255:481–501, 2014. BibTeX DOI
  6. Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation. M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius. Calcolo, 51(4):531–562, 2014. BibTeX DOI
  7. ZZ-type a posteriori error estimators for adaptive boundary element methods on a curve. M. Feischl, T. Führer, M. Karkulik, and D. Praetorius. Eng. Anal. Bound. Elem., 38:49–60, 2014. BibTeX DOI
  8. Convergence of adaptive BEM and adaptive FEM-BEM coupling for estimators without hh-weighting factor. M. Feischl, T. Führer, G. Mitscha-Eibl, D. Praetorius, and E. P. Stephan. Comput. Methods Appl. Math., 14(4):485–508, 2014. BibTeX DOI
  9. Convergence of adaptive FEM for some elliptic obstacle problem with inhomogeneous Dirichlet data. M. Feischl, M. Page, and D. Praetorius. Int. J. Numer. Anal. Model., 11(1):229–253, 2014. BibTeX

2013

  1. Each H1/2H^{1/2}-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd\Bbb R^d. M. Aurada, M. Feischl, J. Kemetmüller, M. Page, and D. Praetorius. ESAIM Math. Model. Numer. Anal., 47(4):1207–1235, 2013. BibTeX DOI
  2. Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity. M. Aurada, M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius. Comput. Mech., 51(4):399–419, 2013. BibTeX DOI
  3. Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods. M. Aurada, M. Feischl, T. Führer, M. Karkulik, and D. Praetorius. Comput. Methods Appl. Math., 13(3):305–332, 2013. BibTeX DOI
  4. Combining micromagnetism and magnetostatic maxwell equations for multiscale magnetic simulations. F. Bruckner, C. Vogler, B. Bergmair, T. Huber, M. Fuger, D. Süss, M. Feischl, T. Führer, M. Page, and D. Praetorius. J. Magn. Magn. Mater., 343:163–168, 2013. BibTeX DOI
  5. Quasi-optimal convergence rate for an adaptive boundary element method. M. Feischl, M. Karkulik, J. M. Melenk, and D. Praetorius. SIAM J. Numer. Anal., 51(2):1327–1348, 2013. BibTeX DOI

2012

  1. A posteriori error estimates for the Johnson-Nédélec FEM-BEM coupling. M. Aurada, M. Feischl, M. Karkulik, and D. Praetorius. Eng. Anal. Bound. Elem., 36(2):255–266, 2012. BibTeX DOI
  2. Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems. M. Aurada, M. Feischl, and D. Praetorius. ESAIM Math. Model. Numer. Anal., 46(5):1147–1173, 2012. BibTeX DOI
  3. 3D FEM-BEM-coupling method to solve magnetostatic maxwell equations. F. Bruckner, C. Vogler, M. Feischl, D. Praetorius, B. Bergmair, T. Huber, M. Fuger, and D. Süss. Journal of Magnetism and Magnetic Materials, 324:1862–1866, May 2012. BibTeX DOI