This is a former research group of the institute. This page is no longer maintained.
Publications of this group
Show:
By Type
By Year
Preprints
-
Improved efficiency of a multi-index FEM for computational uncertainty quantification.
J. Dick, M. Feischl, and C. Schwab.
arXiv preprint 1806.04159, 2018.
BibTeX
ArXiv
-
Sparse compression of expected solution operators.
M. Feischl and D. Peterseim.
arXiv preprint 1807.01741, 2018.
BibTeX
ArXiv
-
Exponential convergence in H1 of hp-FEM for Gevrey regularity with isotropic singularities.
M. Feischl and C. Schwab.
submitted, 2018.
BibTeX
SAM Report
-
Optimal adaptivity for a standard finite element method for the Stokes problem.
M. Feischl.
arXiv preprint 1710.08289, 2017.
BibTeX
ArXiv
-
Optimal adaptivity for non-symmetric FEM/BEM coupling.
M. Feischl.
arXiv preprint 1710.06082, 2017.
BibTeX
ArXiv
Articles
-
Fast random field generation with H-matrices.
M. Feischl, F. Y. Kuo, and I. H. Sloan.
Numer. Math., 140(3):639–676, 2018.
BibTeX
DOI
-
Local inverse estimates for non-local boundary integral operators.
M. Aurada, M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius.
Math. Comp., 86(308):2651–2686, 2017.
BibTeX
DOI
-
Optimal additive Schwarz preconditioning for hypersingular integral equations on locally refined triangulations.
M. Feischl, T. Führer, D. Praetorius, and E. P. Stephan.
Calcolo, 54(1):367–399, 2017.
BibTeX
DOI
-
Optimal preconditioning for the symmetric and nonsymmetric coupling of adaptive finite elements and boundary elements.
M. Feischl, T. Führer, D. Praetorius, and E. P. Stephan.
Numer. Methods Partial Differential Equations, 33(3):603–632, 2017.
BibTeX
DOI
-
Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations.
M. Feischl, G. Gantner, A. Haberl, and D. Praetorius.
Numer. Math., 136(1):147–182, 2017.
BibTeX
DOI
-
Existence of regular solutions of the Landau-Lifshitz-Gilbert equation in 3D with natural boundary conditions.
M. Feischl and T. Tran.
SIAM J. Math. Anal., 49(6):4470–4490, 2017.
BibTeX
DOI
-
The eddy current–LLG equations: FEM-BEM coupling and a priori error estimates.
M. Feischl and T. Tran.
SIAM J. Numer. Anal., 55(4):1786–1819, 2017.
BibTeX
DOI
-
Efficient numerical computation of direct exchange areas in thermal radiation analysis.
M. Feischl, T. Führer, M. Niederer, S. Strommer, A. Steinboeck, and D. Praetorius.
Numerical Heat Transfer, Part B: Fundamentals, 69(6):511–533, 2016.
BibTeX
DOI
-
Adaptive 2D IGA boundary element methods.
M. Feischl, G. Gantner, A. Haberl, and D. Praetorius.
Eng. Anal. Bound. Elem., 62:141–153, 2016.
BibTeX
DOI
-
Adaptive boundary element methods for optimal convergence of point errors.
M. Feischl, G. Gantner, A. Haberl, D. Praetorius, and T. Führer.
Numer. Math., 132(3):541–567, 2016.
BibTeX
DOI
-
An abstract analysis of optimal goal-oriented adaptivity.
M. Feischl, D. Praetorius, and K. G. van der Zee.
SIAM J. Numer. Anal., 54(3):1423–1448, 2016.
BibTeX
DOI
-
Energy norm based error estimators for adaptive BEM for hypersingular integral equations.
M. Aurada, M. Feischl, T. Führer, M. Karkulik, and D. Praetorius.
Appl. Numer. Math., 95:15–35, 2015.
BibTeX
DOI
-
Stability of symmetric and nonsymmetric FEM-BEM couplings for nonlinear elasticity problems.
M. Feischl, T. Führer, M. Karkulik, and D. Praetorius.
Numer. Math., 130(2):199–223, 2015.
BibTeX
DOI
-
Adaptive boundary element methods.
M. Feischl, T. Führer, N. Heuer, M. Karkulik, and D. Praetorius.
Arch. Comput. Methods Eng., 22(3):309–389, 2015.
BibTeX
DOI
-
Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. Part II: Hyper-singular integral equation.
M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius.
Electron. Trans. Numer. Anal., 44:153–176, 2015.
BibTeX
-
Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations.
M. Feischl, G. Gantner, and D. Praetorius.
Comput. Methods Appl. Mech. Engrg., 290:362–386, 2015.
BibTeX
DOI
-
HILBERT—a MATLAB implementation of adaptive 2D-BEM.
M. Aurada, M. Ebner, M. Feischl, S. Ferraz-Leite, T. Führer, P. Goldenits, M. Karkulik, M. Mayr, and D. Praetorius.
Numer. Algorithms, 67(1):1–32, 2014.
BibTeX
DOI
-
Multiscale modeling in micromagnetics: existence of solutions and numerical integration.
F. Bruckner, D. Suess, M. Feischl, T. Führer, P. Goldenits, M. Page, D. Praetorius, and M. Ruggeri.
Math. Models Methods Appl. Sci., 24(13):2627–2662, 2014.
BibTeX
DOI
-
Axioms of adaptivity.
C. Carstensen, M. Feischl, M. Page, and D. Praetorius.
Comput. Math. Appl., 67(6):1195–1253, 2014.
BibTeX
DOI
-
Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems.
M. Feischl, T. Führer, and D. Praetorius.
SIAM J. Numer. Anal., 52(2):601–625, 2014.
BibTeX
DOI
-
Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data.
M. Feischl, M. Page, and D. Praetorius.
J. Comput. Appl. Math., 255:481–501, 2014.
BibTeX
DOI
-
Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation.
M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius.
Calcolo, 51(4):531–562, 2014.
BibTeX
DOI
-
ZZ-type a posteriori error estimators for adaptive boundary element methods on a curve.
M. Feischl, T. Führer, M. Karkulik, and D. Praetorius.
Eng. Anal. Bound. Elem., 38:49–60, 2014.
BibTeX
DOI
-
Convergence of adaptive BEM and adaptive FEM-BEM coupling for estimators without h-weighting factor.
M. Feischl, T. Führer, G. Mitscha-Eibl, D. Praetorius, and E. P. Stephan.
Comput. Methods Appl. Math., 14(4):485–508, 2014.
BibTeX
DOI
-
Convergence of adaptive FEM for some elliptic obstacle problem with inhomogeneous Dirichlet data.
M. Feischl, M. Page, and D. Praetorius.
Int. J. Numer. Anal. Model., 11(1):229–253, 2014.
BibTeX
-
Each H1/2-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd.
M. Aurada, M. Feischl, J. Kemetmüller, M. Page, and D. Praetorius.
ESAIM Math. Model. Numer. Anal., 47(4):1207–1235, 2013.
BibTeX
DOI
-
Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity.
M. Aurada, M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius.
Comput. Mech., 51(4):399–419, 2013.
BibTeX
DOI
-
Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods.
M. Aurada, M. Feischl, T. Führer, M. Karkulik, and D. Praetorius.
Comput. Methods Appl. Math., 13(3):305–332, 2013.
BibTeX
DOI
-
Combining micromagnetism and magnetostatic maxwell equations for multiscale magnetic simulations.
F. Bruckner, C. Vogler, B. Bergmair, T. Huber, M. Fuger, D. Süss, M. Feischl, T. Führer, M. Page, and D. Praetorius.
J. Magn. Magn. Mater., 343:163–168, 2013.
BibTeX
DOI
-
Quasi-optimal convergence rate for an adaptive boundary element method.
M. Feischl, M. Karkulik, J. M. Melenk, and D. Praetorius.
SIAM J. Numer. Anal., 51(2):1327–1348, 2013.
BibTeX
DOI
-
A posteriori error estimates for the Johnson-Nédélec FEM-BEM coupling.
M. Aurada, M. Feischl, M. Karkulik, and D. Praetorius.
Eng. Anal. Bound. Elem., 36(2):255–266, 2012.
BibTeX
DOI
-
Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems.
M. Aurada, M. Feischl, and D. Praetorius.
ESAIM Math. Model. Numer. Anal., 46(5):1147–1173, 2012.
BibTeX
DOI
-
3D FEM-BEM-coupling method to solve magnetostatic maxwell equations.
F. Bruckner, C. Vogler, M. Feischl, D. Praetorius, B. Bergmair, T. Huber, M. Fuger, and D. Süss.
Journal of Magnetism and Magnetic Materials, 324:1862–1866, May 2012.
BibTeX
DOI