Skip to main content

Research Group of Prof. Dr. Michael Feischl

Mr. Feischl has left the institute. This page is no longer maintained.

Contact Information

E-Mail: ed tod nnob-inu tod sni ta lhcsiefa tod b@foo tod de

Teaching

Winter semester 2018/19

See teaching activities of the whole group.

Current Research Projects

Publications

Preprints

  1. Improved efficiency of a multi-index FEM for computational uncertainty quantification. J. Dick, M. Feischl, and C. Schwab. arXiv preprint 1806.04159, 2018. BibTeX ArXiv
  2. Sparse compression of expected solution operators. M. Feischl and D. Peterseim. arXiv preprint 1807.01741, 2018. BibTeX ArXiv
  3. Exponential convergence in H1H^1 of hp-FEM for Gevrey regularity with isotropic singularities. M. Feischl and C. Schwab. submitted, 2018. BibTeX SAM Report
  4. Optimal adaptivity for a standard finite element method for the Stokes problem. M. Feischl. arXiv preprint 1710.08289, 2017. BibTeX ArXiv
  5. Optimal adaptivity for non-symmetric FEM/BEM coupling. M. Feischl. arXiv preprint 1710.06082, 2017. BibTeX ArXiv

Articles

  1. Fast random field generation with H-matrices. M. Feischl, F. Y. Kuo, and I. H. Sloan. Numer. Math., 140(3):639–676, 2018. BibTeX DOI
  2. Local inverse estimates for non-local boundary integral operators. M. Aurada, M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius. Math. Comp., 86(308):2651–2686, 2017. BibTeX DOI
  3. Optimal additive Schwarz preconditioning for hypersingular integral equations on locally refined triangulations. M. Feischl, T. Führer, D. Praetorius, and E. P. Stephan. Calcolo, 54(1):367–399, 2017. BibTeX DOI
  4. Optimal preconditioning for the symmetric and nonsymmetric coupling of adaptive finite elements and boundary elements. M. Feischl, T. Führer, D. Praetorius, and E. P. Stephan. Numer. Methods Partial Differential Equations, 33(3):603–632, 2017. BibTeX DOI
  5. Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations. M. Feischl, G. Gantner, A. Haberl, and D. Praetorius. Numer. Math., 136(1):147–182, 2017. BibTeX DOI
  6. Existence of regular solutions of the Landau-Lifshitz-Gilbert equation in 3D with natural boundary conditions. M. Feischl and T. Tran. SIAM J. Math. Anal., 49(6):4470–4490, 2017. BibTeX DOI
  7. The eddy current–LLG equations: FEM-BEM coupling and a priori error estimates. M. Feischl and T. Tran. SIAM J. Numer. Anal., 55(4):1786–1819, 2017. BibTeX DOI
  8. Efficient numerical computation of direct exchange areas in thermal radiation analysis. M. Feischl, T. Führer, M. Niederer, S. Strommer, A. Steinboeck, and D. Praetorius. Numerical Heat Transfer, Part B: Fundamentals, 69(6):511–533, 2016. BibTeX
  9. Adaptive 2D IGA boundary element methods. M. Feischl, G. Gantner, A. Haberl, and D. Praetorius. Eng. Anal. Bound. Elem., 62:141–153, 2016. BibTeX DOI
  10. Adaptive boundary element methods for optimal convergence of point errors. M. Feischl, G. Gantner, A. Haberl, D. Praetorius, and T. Führer. Numer. Math., 132(3):541–567, 2016. BibTeX DOI
  11. An abstract analysis of optimal goal-oriented adaptivity. M. Feischl, D. Praetorius, and K. G. van der Zee. SIAM J. Numer. Anal., 54(3):1423–1448, 2016. BibTeX DOI
  12. Energy norm based error estimators for adaptive BEM for hypersingular integral equations. M. Aurada, M. Feischl, T. Führer, M. Karkulik, and D. Praetorius. Appl. Numer. Math., 95:15–35, 2015. BibTeX DOI
  13. Stability of symmetric and nonsymmetric FEM-BEM couplings for nonlinear elasticity problems. M. Feischl, T. Führer, M. Karkulik, and D. Praetorius. Numer. Math., 130(2):199–223, 2015. BibTeX DOI
  14. Adaptive boundary element methods. M. Feischl, T. Führer, N. Heuer, M. Karkulik, and D. Praetorius. Arch. Comput. Methods Eng., 22(3):309–389, 2015. BibTeX DOI
  15. Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. Part II: Hyper-singular integral equation. M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius. Electron. Trans. Numer. Anal., 44:153–176, 2015. BibTeX
  16. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations. M. Feischl, G. Gantner, and D. Praetorius. Comput. Methods Appl. Mech. Engrg., 290:362–386, 2015. BibTeX DOI
  17. HILBERT—a MATLAB implementation of adaptive 2D-BEM. M. Aurada, M. Ebner, M. Feischl, S. Ferraz-Leite, T. Führer, P. Goldenits, M. Karkulik, M. Mayr, and D. Praetorius. Numer. Algorithms, 67(1):1–32, 2014. BibTeX DOI
  18. Multiscale modeling in micromagnetics: existence of solutions and numerical integration. F. Bruckner, D. Suess, M. Feischl, T. Führer, P. Goldenits, M. Page, D. Praetorius, and M. Ruggeri. Math. Models Methods Appl. Sci., 24(13):2627–2662, 2014. BibTeX DOI
  19. Axioms of adaptivity. C. Carstensen, M. Feischl, M. Page, and D. Praetorius. Comput. Math. Appl., 67(6):1195–1253, 2014. BibTeX DOI
  20. Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems. M. Feischl, T. Führer, and D. Praetorius. SIAM J. Numer. Anal., 52(2):601–625, 2014. BibTeX DOI
  21. Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data. M. Feischl, M. Page, and D. Praetorius. J. Comput. Appl. Math., 255:481–501, 2014. BibTeX DOI
  22. Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation. M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius. Calcolo, 51(4):531–562, 2014. BibTeX DOI
  23. ZZ-type a posteriori error estimators for adaptive boundary element methods on a curve. M. Feischl, T. Führer, M. Karkulik, and D. Praetorius. Eng. Anal. Bound. Elem., 38:49–60, 2014. BibTeX DOI
  24. Convergence of adaptive BEM and adaptive FEM-BEM coupling for estimators without hh-weighting factor. M. Feischl, T. Führer, G. Mitscha-Eibl, D. Praetorius, and E. P. Stephan. Comput. Methods Appl. Math., 14(4):485–508, 2014. BibTeX DOI
  25. Convergence of adaptive FEM for some elliptic obstacle problem with inhomogeneous Dirichlet data. M. Feischl, M. Page, and D. Praetorius. Int. J. Numer. Anal. Model., 11(1):229–253, 2014. BibTeX
  26. Each H1/2H^{1/2}-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd\Bbb R^d. M. Aurada, M. Feischl, J. Kemetmüller, M. Page, and D. Praetorius. ESAIM Math. Model. Numer. Anal., 47(4):1207–1235, 2013. BibTeX DOI
  27. Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity. M. Aurada, M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius. Comput. Mech., 51(4):399–419, 2013. BibTeX DOI
  28. Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods. M. Aurada, M. Feischl, T. Führer, M. Karkulik, and D. Praetorius. Comput. Methods Appl. Math., 13(3):305–332, 2013. BibTeX DOI
  29. Combining micromagnetism and magnetostatic maxwell equations for multiscale magnetic simulations. F. Bruckner, C. Vogler, B. Bergmair, T. Huber, M. Fuger, D. Süss, M. Feischl, T. Führer, M. Page, and D. Praetorius. J. Magn. Magn. Mater., 343:163–168, 2013. BibTeX
  30. Quasi-optimal convergence rate for an adaptive boundary element method. M. Feischl, M. Karkulik, J. M. Melenk, and D. Praetorius. SIAM J. Numer. Anal., 51(2):1327–1348, 2013. BibTeX DOI
  31. A posteriori error estimates for the Johnson-Nédélec FEM-BEM coupling. M. Aurada, M. Feischl, M. Karkulik, and D. Praetorius. Eng. Anal. Bound. Elem., 36(2):255–266, 2012. BibTeX DOI
  32. Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems. M. Aurada, M. Feischl, and D. Praetorius. ESAIM Math. Model. Numer. Anal., 46(5):1147–1173, 2012. BibTeX DOI
  33. 3D FEM-BEM-coupling method to solve magnetostatic maxwell equations. F. Bruckner, C. Vogler, M. Feischl, D. Praetorius, B. Bergmair, T. Huber, M. Fuger, and D. Süss. Journal of Magnetism and Magnetic Materials, 324:1862–1866, May 2012. BibTeX