Skip to main content

Staff Dr. Patrick Diehl

Mr. Diehl has left the institute. This page is no longer maintained.

Contact Information

E-Mail: ac tod ltmylop ta lheid tod kcirtapa tod b@foo tod de

Teaching

Summer semester 2015

See teaching activities of the whole group.

Completed Research Projects

NVIDIA CUDA™ Research Center

Homepage.

Publications

  1. Visualization of fracture progression in peridynamics. M. Bußler, P. Diehl, D. Pflüger, S. Frey, F. Sadlo, T. Ertl, and M. A. Schweitzer. Computers & Graphics, 67():45–57, 2017. BibTeX DOI
  2. Modeling and Simulation of cracks and fractures with peridynamics in brittle materials. P. Diehl. Dissertation, Institut für Numerische Simulation, Universität Bonn, 2017. BibTeX Read
  3. Extraction of fragments and waves after impact damage in particle-based simulations. P. Diehl, M. Bußler, D. Pflüger, S. Frey, T. Ertl, F. Sadlo, and M. A. Schweitzer. In Meshfree Methods for Partial Differential Equations VIII, pages 17–34. Springer International Publishing, 2017. BibTeX Publisher
  4. Energy equivalence for the horizon independent bond-based peridynamic softening model according to classical theory. P. Diehl. The Mathematics of Finite Elements and Applications 2016 (MAFELAP), 14.06-17.06 2016. BibTeX
  5. Modeling ductile materials with bond-based softening peridynamic model. P. Diehl. 12th. World Congress on Computational Mechanics (WCCM XII), 24.07-29.07 2016. BibTeX
  6. Numerical validation of the bond-based peridynamic softening model against classical theory. P. Diehl. SIAM Mathematical Aspects of Materials Science 2016, 08.05-12.05 2016. BibTeX
  7. Visualization of Fragments, Stress, and Fracture Progression in Peridynamics. P. Diehl. Isogeometric Analysis and Meshfree Methods, 10.10-12.10 2016. BibTeX
  8. Bond-based peridynamics: a quantitative study of Mode I crack opening. P. Diehl, F. Franzelin, D. Pflüger, and G. C. Ganzenmüller. International Journal of Fracture, 201(2):157–170, 2016. BibTeX DOI
  9. Numerical verification of a bond-based softening peridynamic model for small displacements: deducing material parameters from classical linear theory. P. Diehl, R. Lipton, and M. A. Schweitzer. Technical Report, Institut für Numerische Simulation, 2016. BibTeX PDF
  10. Closing the Performance Gap with Modern C++. T. Heller, H. Kaiser, P. Diehl, D. Fey, and M. A. Schweitzer. In M. Taufer, B. Mohr, and J. M. Kunkel, editors, High Performance Computing, volume 9945 of Lecture Notes in Computer Science, 18–31. Springer International Publishing, 2016. BibTeX Publisher
  11. Simulation of wave propagation and impact damage in brittle materials using peridynamics. P. Diehl and M. A. Schweitzer. In M. Mehl, M. Bischoff, and M. Schäfer, editors, Recent Trends in Computational Engineering – CE2014, Lecture Notes in Computational Science and Engineering, pages 251–265. Springer, 2015. BibTeX PDF Publisher
  12. A benchmark study for Mode I crack opening for brittle materials. P. Diehl. 13th US National Congress on Computational Mechanics (USNCCM), 26.07-30.07 2015. BibTeX
  13. A sensitivity study for critical traction in quasi-static peridynamics simulations. P. Diehl. 1st. PAN-American Congress on Computational Mechanics, 27.04-30.04 2015. BibTeX
  14. Numerical verification of the bond-based peridynamic softening model against classical theory. P. Diehl. Nonlocal Models in Mathematics, Computation, Science, and Engineering, 26.11-28.11 2015. BibTeX PDF
  15. Efficient neighbor search for particle methods on GPUs. P. Diehl and M. A. Schweitzer. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, volume 100 of Lecture Notes in Computational Science and Engineering, pages 81–95. Springer, 2014. BibTeX PDF Publisher
  16. Efficient particle-based simulation of dynamic cracks and fractures in ceramic material. P. Diehl. GPU Technology Conference 2014, 24.03-27.03 2014. BibTeX
  17. Sensivity study for wave propagation and impact damage in brittle materials using peridynamics. P. Diehl. ASME International mechanical Engineering Congress and Exposition, 14.11-20.11 2014. BibTeX
  18. Simulation of wave propagation and impact damage in brittle materials using the peridynamics technique. P. Diehl. 11th. World Congress on Computational Mechanics (WCCM XI), 20.07-25.07 2014. BibTeX
  19. Simulation of wave propagation and impact damage in brittle materials using the peridynamics technique. P. Diehl. 3rd Workshop on Computational Engineering, 06.10-10.10 2014. BibTeX
  20. Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations. F. Franzelin, P. Diehl, and D. Pflüger. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, volume 100 of Lecture Notes in Computational Science and Engineering, pages 115–143. Springer, 2014. BibTeX PDF Publisher
  21. Coupling CPU and GPU to simulate efficient dynamic cracks and fractures in solids. P. Diehl. 12th U.S. National Congress on Computational Mechanics (USNCCM12), 21.07-25.07 2013. BibTeX
  22. Efficient k-nearest neighbor search on the GPU. P. Diehl. Seventh International Workshop Meshfree Methods for Partial Differential Equations, 09.09-11.09 2013. BibTeX
  23. Simulation of high-speed velocity impact on ceramic materials using the Peridynamic technique. P. Diehl. III International Conference on Particle-Based Methods. Fundamentals and Applications. Particles 2013, 18.09-20.09 2013. BibTeX
  24. Implementierung eines Peridynamik-Verfahrens auf GPU. P. Diehl. Diplomarbeit, Institute of Parallel and Distributed Systems, University of Stuttgart, 2012. BibTeX PDF