Skip to main content

Staff Dr. Behrend Heeren

Contact Information

Institut für Numerische Simulation
Endenicher Allee 60
53115 Bonn
Fax: heeren
Phone: +49 228 73-3334
Office: EA60 Z2.065
E-Mail: ed tod nnob-inu tod sni ta nereeh tod dnerheba tod b@foo tod de


Summer semester 2020

Winter semester 2019/20

Winter semester 2018/19

See teaching activities of the whole group.

Research Projects


A Functional Map Approach to Shape Spaces

German-Israeli Foundation.

Show description.

Discrete Riemannian calculus on shape space

Project C05, DFG SFB 1060.

Show description. Homepage.

Geodesic Paths in Shape Space

Project 5, FWF NFN S117.

Show description. Homepage.


4D structural analysis of the sugar beet geometry

Project D4, BMBF competence network.

Show description. Homepage.


  1. Consistent curvature approximation on Riemannian shape spaces. A. Effland, B. Heeren, M. Rumpf, and B. Wirth. submitted, 2020. BibTeX arXiv
  2. Statistical shape analysis of tap roots: a methodological case study on laser scanned sugar beets. B. Heeren, S. Paulus, H. Goldbach, H. Kuhlmann, A.-K. Mahlein, M. Rumpf, and B. Wirth. BMC Bioinformatics, 2020. BibTeX PDF
  3. Discrete Riemannian calculus on shell space. B. Heeren, M. Rumpf, M. Wardetzky, and B. Wirth. In R. Nochetto and A. Bonito, editors, Geometric Partial Differential Equations - Part I, volume 21 of Handbook of Numerical Analysis. Elsevier, 2020. BibTeX
  4. Geometric optimization using nonlinear rotation-invariant coordinates. J. Sassen, B. Heeren, K. Hildebrandt, and M. Rumpf. Computer Aided Geometric Design, 2020. BibTeX DOI arXiv
  5. Elastic correspondence between triangle meshes. D. Ezuz, B. Heeren, O. Azencot, M. Rumpf, and M. Ben-Chen. Comput. Graph. Forum, 2019. presented at EUROGRAPHICS 2019. BibTeX
  6. Variational time discretization of Riemannian splines. B. Heeren, M. Rumpf, and B. Wirth. IMA J. Numer. Anal., 39(1):61–104, 2018. BibTeX PDF arXiv
  7. Principal geodesic analysis in the space of discrete shells. B. Heeren, C. Zhang, M. Rumpf, and W. Smith. Comput. Graph. Forum, 2018. BibTeX PDF DOI
  8. Working memory capacity and the functional connectome - insights from resting-state fMRI and voxelwise eigenvector centrality mapping. S. Markett, M. Reuter, B. Heeren, B. Lachmann, B. Weber, and C. Montag. Brain Imaging and Behavior, 12(1):238–246, 2018. BibTeX
  9. Optimization of the branching pattern in coherent phase transitions. P. W. Dondl, B. Heeren, and M. Rumpf. C. R. Math. Acad. Sci. Paris, 354(6):639–644, 2016. BibTeX DOI arXiv
  10. Numerical Methods in Shape Spaces and Optimal Branching Patterns. B. Heeren. PhD thesis, University of Bonn, 2016. BibTeX
  11. Splines in the space of shells. B. Heeren, M. Rumpf, P. Schröder, M. Wardetzky, and B. Wirth. Comput. Graph. Forum, 35(5):111–120, 2016. BibTeX PDF
  12. Voxelwise eigenvector centrality mapping of the human functional connectome reveals an influence of the catechol-o-methyltransferase val158met polymorphism on the default mode and somatomotor network. S. Markett, C. Montag, B. Heeren, R. Sariyska, B. Lachmann, B. Weber, and M. Reuter. Brain Structure and Function, 221:2755–2765, 2016. BibTeX DOI
  13. Shell PCA: statistical shape modelling in shell space. C. Zhang, B. Heeren, M. Rumpf, and W. Smith. In Proc. of IEEE International Conference on Computer Vision. 2015. BibTeX PDF
  14. Exploring the geometry of the space of shells. B. Heeren, M. Rumpf, P. Schröder, M. Wardetzky, and B. Wirth. Comput. Graph. Forum, 33(5):247–256, 2014. BibTeX PDF
  15. Discrete geodesic regression in shape space. B. Berkels, P. T. Fletcher, B. Heeren, M. Rumpf, and B. Wirth. In Proc. of International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, volume 8081 of Lecture Notes in Computer Science, 108–122. Springer, 2013. BibTeX PDF DOI
  16. Time-discrete geodesics in the space of shells. B. Heeren, M. Rumpf, M. Wardetzky, and B. Wirth. Comput. Graph. Forum, 31(5):1755–1764, 2012. BibTeX PDF DOI
  17. Geodätische im Raum von Schalenformen. B. Heeren. diploma thesis, Institut für Numerische Simulation, Universität Bonn, 2011. BibTeX