Skip to main content

Staff Dr. Stefan Simon

Mr. Simon is now at Scanbot SDK. This page is no longer maintained.

Contact Information

E-Mail: ed tod nnob-inu tod sni ta nomisa tod b@foo tod de


Winter semester 2021/22

Summer semester 2021

See teaching activities of the whole group.

Completed Research Projects

Numerical optimization of shape microstructures

Project C06, DFG SFB 1060.

Show description. Homepage.


  1. Two-scale finite element approximation of a homogenized plate model. M. Rumpf, S. Simon, and C. Smoch. submitted, 2023. BibTeX arXiv arXiv
  2. Two-scale elastic shape optimization for additive manufacturing. S. Conti, M. Rumpf, and S. Simon. SIAM Multiscale Model. Simul., 2022. accepted. BibTeX arXiv
  3. Finite element approximation of large-scale isometric deformations of parametrized surfaces. M. Rumpf, S. Simon, and C. Smoch. SIAM Journal on Numerical Analysis, 60(5):2945–2962, 2022. BibTeX DOI arXiv
  4. Computation of optimal transport on discrete metric measure spaces. M. Erbar, M. Rumpf, B. Schmitzer, and S. Simon. Numer. Math., 144:157–200, 2020. BibTeX DOI arXiv
  5. On material optimisation for nonlinearly elastic plates and shells. P. Hornung, M. Rumpf, and S. Simon. ESAIM Control Optim. Calc. Var., 26:82, 2020. BibTeX DOI arXiv
  6. Simultaneous elastic shape optimization for a domain splitting in bone tissue engineering. P. Dondl, P. S. P. Poh, M. Rumpf, and S. Simon. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2227):20180718, jul 2019. BibTeX DOI arXiv code
  7. Material optimization for nonlinearly elastic planar beams. P. Hornung, M. Rumpf, and S. Simon. ESAIM: Control, Optimisation and Calculus of Variations, 25:11, 2019. BibTeX DOI arXiv
  8. Numerical Methods for Optimal Transport and Elastic Shape Optimization. S. Simon. PhD thesis, University of Bonn, 2019. BibTeX Read
  9. Transport based image morphing with intensity modulation. J. Maas, M. Rumpf, and S. Simon. In Proc. of International Conference on Scale Space and Variational Methods in Computer Vision, pages 563–577. Springer, Cham, 2017. BibTeX PDF DOI
  10. Bézier curves in the space of images. A. Effland, M. Rumpf, S. Simon, K. Stahn, and B. Wirth. In Proc. of International Conference on Scale Space and Variational Methods in Computer Vision, volume 9087 of Lecture Notes in Computer Science, pages 372–384. Springer, Cham, 2015. BibTeX arXiv
  11. A generalized model for optimal transport of images including dissipation and density modulation. J. Maas, M. Rumpf, C. Schönlieb, and S. Simon. ESAIM Math. Model. Numer. Anal., 49(6):1745–1769, 2015. BibTeX DOI arXiv