Skip to main content

Staff Prof. Dr. Alexander Effland

Mr. Effland is now at Bonn University, Institute for Applied Mathematics and Interdisciplinary Research Unit Mathematics and Life Sciences. This page is no longer maintained.

Contact Information

E-Mail: ed tod nnob-inu tod mai ta dnalffea tod b@foo tod de

Teaching

Summer semester 2022

  • Graduate Seminar on Numerical Analysis Optimization Methods in Image Processing Seminar, module S5E1.

Winter semester 2017/18

Current Research Projects

Publications

  1. Consistent curvature approximation on Riemannian shape spaces. A. Effland, B. Heeren, M. Rumpf, and B. Wirth. IMA J. Numer. Anal., 42(1):78–106, 2022. BibTeX DOI arXiv
  2. Image morphing in deep feature spaces: theory and applications. A. Effland, E. Kobler, T. Pock, M. Rajković, and M. Rumpf. J. Math. Imaging Vis., 63:309–327, 2021. BibTeX DOI arXiv
  3. Convergence of the time discrete metamorphosis model on Hadamard manifolds. A. Effland, S. Neumayer, and M. Rumpf. SIAM J. Imaging Sci., 13(2):557–588, 2020. BibTeX DOI arXiv
  4. Joint reconstruction and classification of tumor cells and cell interactions in melanoma tissue sections with synthesized training data. A. Effland, E. Kobler, A. Brandenburg, T. Klatzer, L. Neuhäuser, M. Hölzel, J. Landsberg, T. Pock, and M. Rumpf. International Journal of Computer Assisted Radiology and Surgery, 14(4):587–599, feb 2019. BibTeX DOI
  5. Time discrete geodesics in deep feature spaces for image morphing. A. Effland, E. Kobler, T. Pock, and M. Rumpf. In J. Lellmann, M. Burger, and J. Modersitzki, editors, Scale Space and Variational Methods in Computer Vision, 171–182. Cham, 2019. Springer International Publishing. BibTeX DOI
  6. Discrete Riemannian Calculus and A Posteriori Error Control on Shape Spaces. A. Effland. PhD thesis, University of Bonn, 2018. BibTeX Read
  7. Variational networks for joint image reconstruction and classification of tumor immune cell interactions in melanoma tissue sections. A. Effland, M. Hölzel, T. Klatzer, E. Kobler, J. Landsberg, L. Neuhäuser, T. Pock, and M. Rumpf. In Bildverarbeitung für die Medizin. 2018. BibTeX PDF DOI
  8. Image extrapolation for the time discrete metamorphosis model: existence and applications. A. Effland, M. Rumpf, and F. Schäfer. SIAM J. Imaging Sci., 11(1):834–862, 2018. BibTeX PDF DOI arXiv
  9. GPU based image geodesics for optical coherence tomography. B. Berkels, M. Buchner, A. Effland, M. Rumpf, and S. Schmitz-Valckenberg. In Bildverarbeitung für die Medizin, Informatik aktuell, 68–73. Springer, 2017. BibTeX PDF DOI
  10. A posteriori error control for the binary Mumford-Shah model. B. Berkels, A. Effland, and M. Rumpf. Math. Comp., 86(306):1769–1791, 2017. BibTeX PDF DOI arXiv
  11. Time discrete extrapolation in a Riemannian space of images. A. Effland, M. Rumpf, and F. Schäfer. In Proc. of International Conference on Scale Space and Variational Methods in Computer Vision, volume 10302, pages 473–485. Springer, Cham, 2017. BibTeX PDF
  12. Time discrete geodesic paths in the space of images. B. Berkels, A. Effland, and M. Rumpf. SIAM J. Imaging Sci., 8(3):1457–1488, 2015. BibTeX PDF DOI arXiv
  13. Bézier curves in the space of images. A. Effland, M. Rumpf, S. Simon, K. Stahn, and B. Wirth. In Proc. of International Conference on Scale Space and Variational Methods in Computer Vision, volume 9087 of Lecture Notes in Computer Science, pages 372–384. Springer, Cham, 2015. BibTeX arXiv