Mr. Jahn has left the institute. This page is no longer maintained.
Teaching
See teaching activities of the whole group.
Current Research Projects
Publications
Show:
Type
Years
Preprints
-
Efficient solution of ill-posed integral equations through averaging.
M. Griebel and T. Jahn.
Available as INS Preprint No. 2401, 2024.
BibTeX
PDF
-
Convergence of generalized cross-validation for an ill-posed integral equation.
T. Jahn.
Available as INS Preprint No. 2303, 2023.
BibTeX
PDF
-
Discretisation-adaptive regularisation of statistical inverse problems.
T. Jahn.
Universität Bonn, 2022.
BibTeX
arxiv
Article
-
Regularizing linear inverse problems under unknown non-gaussian white noise allowing repeated measurements.
B. Harrach, T. Jahn, and R. Potthast.
IMA Journal of Numerical Analysis, 43(1):443–500, 2023.
BibTeX
arxiv
-
Noise level free regularization of general linear inverse problems under unconstrained white noise.
T. Jahn.
SIAM/ASA Journal on Uncertainty Quantification, 11(2):591–615, 2023.
BibTeX
arxiv
-
A probabilistic oracle inequality and quantification of uncertainty of a modified discrepancy principle for statistical inverse problems.
T. Jahn.
Electronic Transactions on Numerical Analysis, 57:35–56, 2022.
BibTeX
DOI
arxiv
-
Optimal convergence of the discrepancy principle for polynomially and exponentially ill-posed operators under white noise.
T. Jahn.
Numerical Functional Analysis and Optimization, 43(2):145–167, 2022.
BibTeX
DOI
arXiv
arxiv
-
A modified discrepancy principle to attain optimal convergence rates under unknown noise.
T. Jahn.
Inverse Problems, 37(9):095008, 2021.
BibTeX
DOI
arxiv
-
Beyond the bakushinkii veto: regularising linear inverse problems without knowing the noise distribution.
B. Harrach, T. Jahn, and R. Potthast.
Numerische Mathematik, 145(3):581–603, 2020.
BibTeX
DOI
arxiv
-
On the discrepancy principle for stochastic gradient descent.
T. Jahn and B. Jin.
Inverse Problems, 36(9):095009, 2020.
BibTeX
DOI
arxiv
-
The sensorimotor loop as a dynamical system: how regular motion primitives may emerge from self-organized limit cycles.
B. Sándor, T. Jahn, L. Martin, and C. Gros.
Frontiers in Robotics and AI, 2:31, 2015.
BibTeX
DOI
Theses
-
Regularising linear inverse problems under unknown non-Gaussian noise.
T. N. Jahn.
PhD thesis, Institute for Mathematics, Johann Wolfgang Goethe-Universität Frankfurt am Main, 2020.
BibTeX
PDF
-
The high temperature regime of a multi-species mean field spin glass.
T. Jahn.
Master's thesis, Insititute for Mathematics, Johann Wolfgang Goethe-Universität Frankfurt am Main, 2016.
BibTeX
PDF
-
Limit cycles of neuron controlled robots in simulated physical environment.
T. Jahn.
Bachelor's Thesis, Institute for Theoretical Physics, Johann Wolfgang Goethe-Universität Frankfurt am Main, 2015.
BibTeX
PDF