Skip to main content

Research Group of Prof. Dr. Martin Rumpf

Research Projects

Current

A Functional Map Approach to Shape Spaces

German-Israeli Foundation.

Show description.

Discrete Riemannian calculus on shape space

Project C05, DFG SFB 1060.

Show description. Homepage.

Geodesic Paths in Shape Space

Project 5, FWF NFN S117.

Show description. Homepage.

Numerical optimization of shape microstructures

Project C06, DFG SFB 1060.

Show description. Homepage.

Completed

4D structural analysis of the sugar beet geometry

Project D4, BMBF competence network.

Show description. Homepage.

Anisotropic Curvature Flows in Surface Modeling

Homepage.

Mathematical modeling and simulation of microstructured magnetic-shape-memory materials

Project A6, DFG priority program 1239.

Show description. Homepage.

Morphological Non-Rigid Registration

Show description. Homepage.

Multi-Scale Shape Optimization under Uncertainty

DFG priority program 1253.

Show description. Homepage.

Segmentation with adaptive Level Set methods

Show description. Homepage.

Variational Methods for Model-based Interactive Analysis of Flows

DFG priority program 1335.

Hide description. Homepage.

This project aims at an explorative analysis and classification of complex flow pattern such as shear friction, curls or vortices. For real world flows in 2D and 3D and their temporal evolution a fully automatic and global classification is far out of reach. Hence, we will develop a flow exploration method which combines a multi-scale variational approach for the classification of flow pattern with a flexible interface for user guidance. The variational functional consists of a fidelity term, which compares the observed flow locally with parametrized physical or statistically learned models, a prior reflecting the probability of the pattern parameters and its shape, and a suitable functional encoding the user’s guidance and preferences. The analysis tool to be developed will be applied to experimental flow data rendered by different types of image sequences and to flow fields from computational fluid dynamics simulation. The user interactively selects the scale for the flow classification ranging from global macroscopic to local mesoscopic flow phenomena.