Skip to main content

Staff Dr. Martin Lenz

Contact Information

Institut für Numerische Simulation
Endenicher Allee 60
53115 Bonn
Phone: +49 228 73-3416
Office: EA60 2.037
E-Mail: ed tod nnob-inu tod sni ta znel tod nitrama tod b@foo tod de


Winter semester 2018/19

Summer semester 2018

See teaching activities of the whole group.

Research Projects


Numerical optimization of shape microstructures

Project C06, DFG SFB 1060.

Show description. Homepage.


Mathematical modeling and simulation of microstructured magnetic-shape-memory materials

Project A6, DFG priority program 1239.

Show description. Homepage.


  1. A posteriori modeling error estimates in the optimization of two-scale elastic composite materials. S. Conti, B. Geihe, M. Lenz, and M. Rumpf. ESAIM: Mathematical Modelling and Numerical Analysis, 2017. to appear. BibTeX PDF arXiv
  2. Hysteresis in magnetic shape memory composites: modeling and simulation. S. Conti, M. Lenz, and M. Rumpf. J. Mech. Phys. Solids, 89:272–286, 2016. BibTeX PDF Publisher arXiv
  3. Risk averse elastic shape optimization with parametrized fine scale geometry. B. Geihe, M. Lenz, M. Rumpf, and R. Schultz. Mathematical Programming, 141(1-2):383–403, 2013. BibTeX PDF Publisher
  4. Modeling and simulation of large microstructured particles in magnetic-shape-memory. S. Conti, M. Lenz, and M. Rumpf. Advanced Engineering Materials, 14(8):582–588, 2012. BibTeX PDF Publisher
  5. A convergent finite volume scheme for diffusion on evolving surfaces. M. Lenz, S. F. Nemadjieu, and M. Rumpf. SIAM Journal on Numerical Analysis, 49(1):15–37, 2011. BibTeX PDF Publisher
  6. Macroscopic behaviour of magnetic shape-memory polycrystals and polymer composites. S. Conti, M. Lenz, and M. Rumpf. In 7th European Symposium on Martensitic Transformations and Shape Memory Alloys, volume 481–482 of Materials Science and Engineering: A, 351–355. 2008. BibTeX PDF Publisher
  7. Finite volume method on moving surfaces. M. Lenz, S. F. Nemadjieu, and M. Rumpf. In R. Eymard and J.-M. Hérald, editors, Finite Volumes for Complex Applications V, 561–576. Wiley, 2008. BibTeX PDF
  8. Modeling and simulation of magnetic shape-memory polymer composites. S. Conti, M. Lenz, and M. Rumpf. Journal of Mechanics and Physics of Solids, 55:1462–1486, 2007. BibTeX PDF Publisher
  9. Modellierung und Simulation des effektiven Verhaltens von Grenzflächen in Metalllegierungen. M. Lenz. Dissertation, University Bonn, 2007. BibTeX PDF Read
  10. Multiple scales in phase separating systems with elastic misfit. H. Garcke, M. Lenz, B. Niethammer, M. Rumpf, and U. Weikard. In A. Mielke, editor, Analysis, Modeling and Simulation of Multiscale Problems. Springer, 2006. BibTeX PDF Publisher
  11. Numerical methods for fourth order nonlinear degenerate diffusion problems. J. Becker, G. Grün, M. Lenz, and M. Rumpf. Applications of Mathematics, 47(6):517–543, 2002. BibTeX Publisher
  12. A finite volume scheme for surfactant driven thin film flow. G. Grün, M. Lenz, and M. Rumpf. In R. Herbin and D. Kröner, editors, Finite Volumes for Complex Applications III, 567–574. Hermes Penton Sciences, 2002. BibTeX PDF
  13. Finite Volumen Methoden für degenerierte parabolische Systeme – Ausbreitung eines Surfactant auf einem dünnen Flüssigkeitsfilm. M. Lenz. Diploma thesis, University Bonn, 2002. BibTeX PDF
  14. A procedural interface to hierarchical grids. T. Geßner, B. Haasdonk, R. Kende, M. Lenz, R. Neubauer, M. Metscher, M. Ohlberger, W. Rosenbaum, M. Rumpf, R. Schwörer, M. Spielberg, and U. Weikard. Technical Report, SFB 256, University Bonn, 1999. BibTeX PDF Link