Skip to main content

Staff Dr. Martin Lenz

Contact Information

Address:
Institut für Numerische Simulation
Endenicher Allee 60
53115 Bonn
Phone: +49 228 73-3416
Office: EA60 2.037
E-Mail: ed tod nnob-inu tod sni ta znel tod nitrama tod b@foo tod de

Teaching

Summer semester 2019

Winter semester 2018/19

See teaching activities of the whole group.

Research Projects

Current

Numerical optimization of shape microstructures

Project C06, DFG SFB 1060.

Show description. Homepage.

Completed

Mathematical modeling and simulation of microstructured magnetic-shape-memory materials

Project A6, DFG priority program 1239.

Show description. Homepage.

Publications

  1. Homogenization in magnetic-shape-memory polymer composites. S. Conti, M. Lenz, M. Pawelczyk, and M. Rumpf. In V. Schulz and D. Seck, editors, Shape Optimization, Homogenization and Optimal Control : DFG-AIMS workshop held at the AIMS Center Senegal, March 13-16, 2017, pages 1–17. Springer International Publishing, Cham, 2018. BibTeX DOI
  2. A posteriori modeling error estimates in the optimization of two-scale elastic composite materials. S. Conti, B. Geihe, M. Lenz, and M. Rumpf. ESAIM: Mathematical Modelling and Numerical Analysis, 2017. to appear. BibTeX PDF arXiv
  3. Hysteresis in magnetic shape memory composites: modeling and simulation. S. Conti, M. Lenz, and M. Rumpf. J. Mech. Phys. Solids, 89:272–286, 2016. BibTeX PDF DOI arXiv
  4. Risk averse elastic shape optimization with parametrized fine scale geometry. B. Geihe, M. Lenz, M. Rumpf, and R. Schultz. Mathematical Programming, 141(1-2):383–403, 2013. BibTeX PDF DOI
  5. Modeling and simulation of large microstructured particles in magnetic-shape-memory. S. Conti, M. Lenz, and M. Rumpf. Advanced Engineering Materials, 14(8):582–588, 2012. BibTeX PDF DOI
  6. A convergent finite volume scheme for diffusion on evolving surfaces. M. Lenz, S. F. Nemadjieu, and M. Rumpf. SIAM Journal on Numerical Analysis, 49(1):15–37, 2011. BibTeX PDF DOI
  7. Macroscopic behaviour of magnetic shape-memory polycrystals and polymer composites. S. Conti, M. Lenz, and M. Rumpf. In 7th European Symposium on Martensitic Transformations and Shape Memory Alloys, volume 481–482 of Materials Science and Engineering: A, 351–355. 2008. BibTeX PDF DOI
  8. Finite volume method on moving surfaces. M. Lenz, S. F. Nemadjieu, and M. Rumpf. In R. Eymard and J.-M. Hérald, editors, Finite Volumes for Complex Applications V, 561–576. Wiley, 2008. BibTeX PDF
  9. Modeling and simulation of magnetic shape-memory polymer composites. S. Conti, M. Lenz, and M. Rumpf. Journal of Mechanics and Physics of Solids, 55:1462–1486, 2007. BibTeX PDF DOI
  10. Modellierung und Simulation des effektiven Verhaltens von Grenzflächen in Metalllegierungen. M. Lenz. Dissertation, University Bonn, 2007. BibTeX PDF Read
  11. Multiple scales in phase separating systems with elastic misfit. H. Garcke, M. Lenz, B. Niethammer, M. Rumpf, and U. Weikard. In A. Mielke, editor, Analysis, Modeling and Simulation of Multiscale Problems. Springer, 2006. BibTeX PDF Publisher
  12. Numerical methods for fourth order nonlinear degenerate diffusion problems. J. Becker, G. Grün, M. Lenz, and M. Rumpf. Applications of Mathematics, 47(6):517–543, 2002. BibTeX DOI
  13. A finite volume scheme for surfactant driven thin film flow. G. Grün, M. Lenz, and M. Rumpf. In R. Herbin and D. Kröner, editors, Finite Volumes for Complex Applications III, 567–574. Hermes Penton Sciences, 2002. BibTeX PDF
  14. Finite Volumen Methoden für degenerierte parabolische Systeme – Ausbreitung eines Surfactant auf einem dünnen Flüssigkeitsfilm. M. Lenz. Diploma thesis, University Bonn, 2002. BibTeX PDF
  15. A procedural interface to hierarchical grids. T. Geßner, B. Haasdonk, R. Kende, M. Lenz, R. Neubauer, M. Metscher, M. Ohlberger, W. Rosenbaum, M. Rumpf, R. Schwörer, M. Spielberg, and U. Weikard. Technical Report, SFB 256, University Bonn, 1999. BibTeX PDF Link