Skip to main content

Legacy display Course

This is an archived course. The content might be broken.

Lecture in SS 2015:

Wissenschaftliches Rechnen II (V3E2/F4E1)

Prof. Dr. Daniel Peterseim

Assistant: Dr. Dietmar Gallistl

Tutorials: Adolfo Arroyo Rabasa

News

The examinations will take place in room 6.002 (Wegelerstr. 6).

Dates

Lecture: Tuesday 10(c.t.)-12, Wegelerstr. 10, Zeichensaal
Thursday 8(c.t.)-10, Wegelerstr. 6, room 5.002
Tutorial: Monday 14(c.t.)-16, Wegelerstr. 6, room 6.020

Exercise Sheets

Login data for downloads: Username: wissrechSS15 Passwd: announced in the lecture

Exercise sheetDiscussionRemarks
Sheet 113. April
Sheet 220. April
Sheet 327. Aprilsoftware
Sheet 44. Mai
Sheet 511. Mai
Sheet 618. Mai
Sheet 701. Junisoftware
Sheet 808. Junisoftware, solutions
Sheet 915.Juni 18. Juni
Sheet 1022.Juni
Sheet 1129. Junisoftware
Sheet 1206. Julisoftware

Content

Partial differential equations (PDEs) describe processes in continua, such as wave propagation, diffusion, and advection. They are used to construct models of the most basic theories underlying physics and engineering. However, in many interesting cases, PDEs are difficult to solve analytically and have to be approximated numerically.
The course gives an introduction to some classes of PDEs and the corresponding finite element type methods for their numerical simulation. Among the target applications are heat conduction, viscous fluid flow and acoustic scattering. Depending on the particular problem, the lecture will discuss the algorithms and the mathematics that underlie the numerical methods as well as their practical implementation.

Requirements

Contents of Modules Algorithmische Mathematik I/II and Einführung in die Grundlagen der Numerik. Knowledge of Module Wissenschaftliches Rechnen I is desirable but not necessarily required.

Literature

  • [1] D. Braess. Finite elements. Cambridge University Press, Cambridge, third edition, 2007.
  • [2] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods, Springer, New York, third edition, 2008.
  • [3] D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods, Springer, Heidelberg, 2012.