Skip to main content

Research Group of Prof. Dr. Martin Rumpf

Contact Information

Address:
Institut für Numerische Simulation
Endenicher Allee 60
53115 Bonn
Phone: +49 228 73-7866
Office: EA60 2.035
E-Mail: ed tod nnob-inu tod sni ta fpmur tod nitrama tod b@foo tod de

Teaching

Winter semester 2024/25

Summer semester 2024

See teaching activities of the whole group.

Publications

2024

  1. Convergent autoencoder approximation of low bending and low distortion manifold embeddings. J. Braunsmann, M. Rajković, M. Rumpf, and B. Wirth. ESAIM Math. Model. Numer. Anal., 58(1):335–361, 2024. BibTeX DOI arXiv
  2. Approximation of splines in Wasserstein spaces. J. Justiniano, M. Erbar, and M. Rumpf. ESAIM Control Optim. Calc. Var., 2024. online first. BibTeX DOI
  3. Two-scale finite element approximation of a homogenized plate model. M. Rumpf, S. Simon, and C. Smoch. SIAM Journal on Numerical Analysis, 62(5):2121–2142, 2024. BibTeX DOI arXiv
  4. Repulsive shells. J. Sassen, H. Schumacher, M. Rumpf, and K. Crane. ACM Trans. Graph., 2024. best paper award SIGGRAPH 2024. BibTeX DOI

2023

  1. Geometry of needle-like microstructures in shape-memory alloys. S. Conti, M. Lenz, M. Rumpf, J. Verhülsdonk, and B. Zwicknagl. Shap. Mem. Superelasticity, 2023. BibTeX DOI
  2. Microstructure of macrointerfaces in shape-memory alloys. S. Conti, M. Lenz, M. Rumpf, J. Verhülsdonk, and B. Zwicknagl. J. Mech. Phys. Solids, 179:105343, 2023. BibTeX DOI
  3. Two-scale elastic shape optimization for additive manufacturing. S. Conti, M. Rumpf, and S. Simon. Multiscale Modeling and Simulation, 21(1):119–142, 2023. BibTeX DOI
  4. The variational approach to the flow of Sobolev-diffeomorphisms model. M. Guastini, M. Rajković, M. Rumpf, and B. Wirth. In L. Calatroni, M. Donatelli, S. Morigi, M. Prato, and M. Santacesaria, editors, Scale Space and Variational Methods in Computer Vision, 551–564. Cham, 2023. Springer International Publishing. BibTeX DOI PDF
  5. An elastic basis for spectral shape correspondence. F. Hartwig, J. Sassen, O. Azencot, M. Rumpf, and M. Ben-Chen. In ACM SIGGRAPH 2023 Conference Proceedings, SIGGRAPH '23. New York, NY, USA, 2023. Association for Computing Machinery. BibTeX Supplementary PDF DOI Talk Teaser Code
  6. Parametrizing Product Shape Manifolds by Composite Networks. J. Sassen, K. Hildebrandt, M. Rumpf, and B. Wirth. In International Conference on Learning Representations. 2023. BibTeX PDF arXiv OpenReview

2022

  1. Mean curvature motion of point cloud varifolds. B. Buet and M. Rumpf. ESAIM Math. Model. Numer. Anal., 56:1773–1808, 2022. BibTeX arXiv
  2. Consistent curvature approximation on Riemannian shape spaces. A. Effland, B. Heeren, M. Rumpf, and B. Wirth. IMA J. Numer. Anal., 42(1):78–106, 2022. BibTeX DOI arXiv
  3. Consistent approximation of interpolating splines in image metamorphosis. J. Justiniano, M. Rajković, and M. Rumpf. J. Math. Imaging Vis., 42(1):78–106, 2022. BibTeX DOI arXiv
  4. Finite element approximation of large-scale isometric deformations of parametrized surfaces. M. Rumpf, S. Simon, and C. Smoch. SIAM Journal on Numerical Analysis, 60(5):2945–2962, 2022. BibTeX DOI arXiv

2021

  1. Learning low bending and low distortion manifold embeddings. J. Braunsmann, M. Rajković, M. Rumpf, and B. Wirth. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 4416–4424. June 2021. BibTeX arXiv
  2. A pessimistic bilevel stochastic problem for elastic shape optimization. J. Burtscheidt, M. Claus, S. Conti, M. Rumpf, J. Sassen, and R. Schultz. Mathematical Programming, Nov 2021. BibTeX PDF DOI arXiv
  3. Image morphing in deep feature spaces: theory and applications. A. Effland, E. Kobler, T. Pock, M. Rajković, and M. Rumpf. J. Math. Imaging Vis., 63:309–327, 2021. BibTeX DOI arXiv
  4. Splines for image metamorphosis. J. Justiniano, M. Rajković, and M. Rumpf. In Scale Space and Variational Methods in Computer Vision, 463–475. 2021. BibTeX
  5. A phase-field approach to variational hierarchical surface segmentation. J. Meny, M. Rumpf, and J. Sassen. Computer Aided Geometric Design, 89:102025, 2021. BibTeX PDF DOI

2020

  1. Convergence of the time discrete metamorphosis model on Hadamard manifolds. A. Effland, S. Neumayer, and M. Rumpf. SIAM J. Imaging Sci., 13(2):557–588, 2020. BibTeX DOI arXiv
  2. Computation of optimal transport on discrete metric measure spaces. M. Erbar, M. Rumpf, B. Schmitzer, and S. Simon. Numer. Math., 144:157–200, 2020. BibTeX DOI arXiv
  3. Shape space - a paradigm for character animation in computer graphics. B. Heeren and M. Rumpf. Technical Report 07, Mathematisches Forschungsinstitut Oberwolfach, 2020. BibTeX DOI
  4. On material optimisation for nonlinearly elastic plates and shells. P. Hornung, M. Rumpf, and S. Simon. ESAIM Control Optim. Calc. Var., 26:82, 2020. BibTeX DOI arXiv
  5. Nonlinear Deformation Synthesis via Sparse Principal Geodesic Analysis. J. Sassen, K. Hildebrandt, and M. Rumpf. Comput. Graph. Forum, 39(5):119–132, 2020. BibTeX Video PDF DOI Talk
  6. Geometry of martensite needles in shape memory alloys. S. Conti, M. Lenz, N. Lüthen, M. Rumpf, and B. Zwicknagl. C. R. Math. Acad. Sci. Paris, 358(9-10):1047–1057, 2020. BibTeX DOI arXiv
  7. Statistical shape analysis of tap roots: a methodological case study on laser scanned sugar beets. B. Heeren, S. Paulus, H. Goldbach, H. Kuhlmann, A.-K. Mahlein, M. Rumpf, and B. Wirth. BMC Bioinformatics, 21:335, 2020. BibTeX DOI PDF
  8. Discrete Riemannian calculus on shell space. B. Heeren, M. Rumpf, M. Wardetzky, and B. Wirth. In R. Nochetto and A. Bonito, editors, Geometric Partial Differential Equations - Part I, volume 21 of Handbook of Numerical Analysis, pages 621–679. Elsevier, 2020. BibTeX DOI
  9. Geometric optimization using nonlinear rotation-invariant coordinates. J. Sassen, B. Heeren, K. Hildebrandt, and M. Rumpf. Computer Aided Geometric Design, 77:101829, 2020. BibTeX DOI arXiv

2019

  1. Simultaneous elastic shape optimization for a domain splitting in bone tissue engineering. P. Dondl, P. S. P. Poh, M. Rumpf, and S. Simon. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2227):20180718, jul 2019. BibTeX DOI arXiv code
  2. Joint reconstruction and classification of tumor cells and cell interactions in melanoma tissue sections with synthesized training data. A. Effland, E. Kobler, A. Brandenburg, T. Klatzer, L. Neuhäuser, M. Hölzel, J. Landsberg, T. Pock, and M. Rumpf. International Journal of Computer Assisted Radiology and Surgery, 14(4):587–599, feb 2019. BibTeX DOI
  3. Time discrete geodesics in deep feature spaces for image morphing. A. Effland, E. Kobler, T. Pock, and M. Rumpf. In J. Lellmann, M. Burger, and J. Modersitzki, editors, Scale Space and Variational Methods in Computer Vision, 171–182. Cham, 2019. Springer International Publishing. BibTeX DOI
  4. Elastic correspondence between triangle meshes. D. Ezuz, B. Heeren, O. Azencot, M. Rumpf, and M. Ben-Chen. Comput. Graph. Forum, 38(2):121–134, 2019. presented at EUROGRAPHICS 2019. BibTeX DOI
  5. Experimental and stochastic models of melanoma T-cell therapy define impact of subclone fitness on selection of antigen loss variants. N. Glodde, A. Kraut, D. van den Boorn-Konijnenberg, S. Vadder, F. Kreten, J. L. Schmid-Burgk, P. Aymans, K. Echelmeyer, M. Rumpf, J. Landsberg, T. Bald, T. Tüting, A. Bovier, and M. Hölzel. 2019. bioRxiv preprint. BibTeX bioRxiv
  6. Material optimization for nonlinearly elastic planar beams. P. Hornung, M. Rumpf, and S. Simon. ESAIM: Control, Optimisation and Calculus of Variations, 25:11, 2019. BibTeX DOI arXiv

2018

  1. A posteriori modeling error estimates in the optimization of two-scale elastic composite materials. S. Conti, B. Geihe, M. Lenz, and M. Rumpf. ESAIM: Mathematical Modelling and Numerical Analysis, 52(4):1457–14761, July–August 2018. BibTeX PDF DOI arXiv
  2. Homogenization in magnetic-shape-memory polymer composites. S. Conti, M. Lenz, M. Pawelczyk, and M. Rumpf. In V. Schulz and D. Seck, editors, Shape Optimization, Homogenization and Optimal Control : DFG-AIMS workshop held at the AIMS Center Senegal, March 13-16, 2017, pages 1–17. Springer International Publishing, Cham, 2018. BibTeX DOI
  3. Stochastic dominance constraints in elastic shape optimization. S. Conti, M. Rumpf, R. Schultz, and S. Tölkes. SIAM Journal on Control and Optimization, 56(4):3021–3034, jan 2018. BibTeX PDF DOI arXiv
  4. Variational networks for joint image reconstruction and classification of tumor immune cell interactions in melanoma tissue sections. A. Effland, M. Hölzel, T. Klatzer, E. Kobler, J. Landsberg, L. Neuhäuser, T. Pock, and M. Rumpf. In Bildverarbeitung für die Medizin. 2018. BibTeX PDF DOI
  5. Image extrapolation for the time discrete metamorphosis model: existence and applications. A. Effland, M. Rumpf, and F. Schäfer. SIAM J. Imaging Sci., 11(1):834–862, 2018. BibTeX PDF DOI arXiv
  6. Variational time discretization of Riemannian splines. B. Heeren, M. Rumpf, and B. Wirth. IMA J. Numer. Anal., 39(1):61–104, 2018. BibTeX PDF arXiv
  7. Principal geodesic analysis in the space of discrete shells. B. Heeren, C. Zhang, M. Rumpf, and W. Smith. Comput. Graph. Forum, 37(5):173–184, 2018. BibTeX PDF DOI
  8. Branching structures in elastic shape optimization. N. Lüthen, M. Rumpf, S. Tölkes, and O. Vantzos. In V. Schulz and D. Seck, editors, Shape Optimization, Homogenization and Optimal Control : DFG-AIMS workshop held at the AIMS Center Senegal, March 13-16, 2017, volume 169 of International Series of Numerical Mathematics, pages 213–225. Birkhäuser, Cham, 2018. BibTeX PDF DOI arXiv

2017

  1. GPU based image geodesics for optical coherence tomography. B. Berkels, M. Buchner, A. Effland, M. Rumpf, and S. Schmitz-Valckenberg. In Bildverarbeitung für die Medizin, Informatik aktuell, 68–73. Springer, 2017. BibTeX PDF DOI
  2. A posteriori error control for the binary Mumford-Shah model. B. Berkels, A. Effland, and M. Rumpf. Math. Comp., 86(306):1769–1791, 2017. BibTeX PDF DOI arXiv
  3. Time discrete extrapolation in a Riemannian space of images. A. Effland, M. Rumpf, and F. Schäfer. In Proc. of International Conference on Scale Space and Variational Methods in Computer Vision, volume 10302, pages 473–485. Springer, Cham, 2017. BibTeX PDF
  4. Smooth interpolation of key frames in a Riemannian shell space. P. Huber, R. Perl, and M. Rumpf. Comput. Aided Geom. Design, 52 - 53:313 – 328, 2017. BibTeX PDF DOI
  5. Shape-aware matching of implicit surfaces based on thin shell energies. J. A. Iglesias, M. Rumpf, and O. Scherzer. Foundations of Computational Mathematics, 18(4):891–927, June 2017. BibTeX DOI
  6. Transport based image morphing with intensity modulation. J. Maas, M. Rumpf, and S. Simon. In Proc. of International Conference on Scale Space and Variational Methods in Computer Vision, pages 563–577. Springer, Cham, 2017. BibTeX PDF DOI
  7. Functional thin films on surfaces. O. Vantzos, O. Azencot, M. Wardetzky, M. Rumpf, and M. Ben-Chen. IEEE Transactions of Visualization and Computer Graphics, 23(3):1179–1192, March 2017. BibTeX PDF DOI

2016

  1. Hysteresis in magnetic shape memory composites: modeling and simulation. S. Conti, M. Lenz, and M. Rumpf. J. Mech. Phys. Solids, 89:272–286, 2016. BibTeX PDF DOI arXiv
  2. Optimization of the branching pattern in coherent phase transitions. P. W. Dondl, B. Heeren, and M. Rumpf. C. R. Math. Acad. Sci. Paris, 354(6):639–644, 2016. BibTeX DOI arXiv
  3. A posteriori error estimates for sequential laminates in shape optimization. B. Geihe and M. Rumpf. Discrete and Continuous Dynamical Systems - Series S, 9(5):1377–1392, 2016. BibTeX PDF DOI arXiv
  4. Splines in the space of shells. B. Heeren, M. Rumpf, P. Schröder, M. Wardetzky, and B. Wirth. Comput. Graph. Forum, 35(5):111–120, 2016. BibTeX PDF
  5. On numerical integration in isogeometric subdivision methods for PDEs on surfaces. B. Jüttler, A. Mantzaflaris, R. Perl, and M. Rumpf. Computer Methods in Applied Mechanics and Engineering, 302:131–146, 2016. BibTeX DOI

2015

  1. Functional thin films on surfaces. O. Azencot, O. Vantzos, M. Wardetzky, M. Rumpf, and M. Ben-Chen. In Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 137–146. 2015. BibTeX DOI
  2. Time discrete geodesic paths in the space of images. B. Berkels, A. Effland, and M. Rumpf. SIAM J. Imaging Sci., 8(3):1457–1488, 2015. BibTeX PDF DOI arXiv
  3. A BV functional and its relaxation for joint motion estimation and image sequence recovery. S. Conti, J. Ginster, and M. Rumpf. ESAIM: Mathematical Modelling and Numerical Analysis, 49(5):1463–1487, 2015. BibTeX DOI
  4. Bézier curves in the space of images. A. Effland, M. Rumpf, S. Simon, K. Stahn, and B. Wirth. In Proc. of International Conference on Scale Space and Variational Methods in Computer Vision, volume 9087 of Lecture Notes in Computer Science, pages 372–384. Springer, Cham, 2015. BibTeX arXiv
  5. A generalized model for optimal transport of images including dissipation and density modulation. J. Maas, M. Rumpf, C. Schönlieb, and S. Simon. ESAIM Math. Model. Numer. Anal., 49(6):1745–1769, 2015. BibTeX DOI arXiv
  6. Variational time discretization of geodesic calculus. M. Rumpf and B. Wirth. IMA J. Numer. Anal., 35(3):1011–1046, 2015. BibTeX DOI arXiv
  7. Shell PCA: statistical shape modelling in shell space. C. Zhang, B. Heeren, M. Rumpf, and W. Smith. In Proc. of IEEE International Conference on Computer Vision, 1671–1679. 2015. BibTeX PDF DOI

2014

  1. Co-registration of intra-operative brain surface photographs and pre-operative MR images. B. Berkels, I. Cabrilo, S. Haller, M. Rumpf, and K. Schaller. International Journal of Computer Assisted Radiology and Surgery, 9(3):387–400, May 2014. BibTeX PDF DOI
  2. Two-stage stochastic optimization meets two-scale simulation. S. Conti, B. Geihe, M. Rumpf, and R. Schultz. In G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher, and S. Ulbrich, editors, Trends in PDE Constrained Optimization, volume 165 of International Series of Numerical Mathematics, pages 193–211. Springer International Publishing, 2014. BibTeX PDF DOI
  3. Exploring the geometry of the space of shells. B. Heeren, M. Rumpf, P. Schröder, M. Wardetzky, and B. Wirth. Comput. Graph. Forum, 33(5):247–256, 2014. BibTeX PDF
  4. A nested variational time discretization for parametric anisotropic willmore flow. R. Perl, P. Pozzi, and M. Rumpf. In M. Griebel, editor, Singular Phenomena and Scaling in Mathematical Models, pages 221–241. Springer, Cham, 2014. BibTeX DOI
  5. Geometry processing from an elastic perspective. M. Rumpf and M. Wardetzky. GAMM-Mitt., 37(2):184–216, 2014. BibTeX PDF DOI

2013

  1. Joint surface reconstruction and 4D deformation estimation from sparse data and prior knowledge for marker-less respiratory motion tracking. B. Berkels, S. Bauer, S. Ettl, O. Arold, J. Hornegger, and M. Rumpf. Medical Physics, 40(9):091703, September 2013. BibTeX DOI
  2. Co-registration of intra-operative photographs and pre-operative MR images. B. Berkels, I. Cabrilo, S. Haller, M. Rumpf, and K. Schaller. In Bildverarbeitung für die Medizin 2013, Informatik aktuell, 122–127. Springer, 2013. BibTeX PDF DOI
  3. Discrete geodesic regression in shape space. B. Berkels, P. T. Fletcher, B. Heeren, M. Rumpf, and B. Wirth. In Proc. of International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, volume 8081 of Lecture Notes in Computer Science, 108–122. Springer, 2013. BibTeX PDF DOI
  4. A phase field based PDE constraint optimization approach to time discrete Willmore flow. M. Franken, M. Rumpf, and B. Wirth. International Journal of Numerical Analysis and Modeling, 10(1):116–138, 2013. BibTeX PDF
  5. Risk averse elastic shape optimization with parametrized fine scale geometry. B. Geihe, M. Lenz, M. Rumpf, and R. Schultz. Mathematical Programming, 141(1-2):383–403, 2013. BibTeX PDF DOI
  6. A thin shell approach to the registration of implicit surfaces. J. Iglesias, B. Berkels, M. Rumpf, and O. Scherzer. In M. Bronstein, J. Favre, and K. Hormann, editors, Vision, Modeling and Visualization, 89–96. Eurographics Association, 2013. BibTeX PDF DOI
  7. Natural gradient flow discretization of viscous thin films on curved geometries. M. Rumpf and O. Vantzos. Mathematical Models and Methods in Applied Sciences, 23(05):917–947, 2013. BibTeX PDF DOI
  8. Discrete geodesic calculus in shape space and applications in the space of viscous fluidic objects. M. Rumpf and B. Wirth. SIAM J. Imaging Sci., 6(4):2581–2602, 2013. BibTeX PDF arXiv

2012

  1. On shape optimization with stochastic loadings. P. Atwal, S. Conti, B. Geihe, M. Pach, M. Rumpf, and R. Schultz. In G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich, editors, Constrained Optimization and Optimal Control for Partial Differential Equations, volume 160 of International Series of Numerical Mathematics, chapter 2, pages 215–243. Springer, Basel, 2012. BibTeX PDF DOI
  2. A nested variational time discretization for parametric Willmore flow. N. Balzani and M. Rumpf. Interfaces Free Bound., 14(4):431–454, 2012. BibTeX PDF DOI
  3. Marker-less reconstruction of dense 4-d surface motion fields using active laser triangulation from sparse measurements for respiratory motion management. S. Bauer, B. Berkels, S. Ettl, O. Arold, J. Hornegger, and M. Rumpf. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 7510 of Lecture Notes in Computer Science, 414–421. Springer, 2012. BibTeX PDF DOI
  4. Modeling and simulation of large microstructured particles in magnetic-shape-memory. S. Conti, M. Lenz, and M. Rumpf. Advanced Engineering Materials, 14(8):582–588, 2012. BibTeX PDF DOI
  5. Time-discrete geodesics in the space of shells. B. Heeren, M. Rumpf, M. Wardetzky, and B. Wirth. Comput. Graph. Forum, 31(5):1755–1764, 2012. BibTeX PDF DOI
  6. A phase-field model for compliance shape optimization in nonlinear elasticity. P. Penzler, M. Rumpf, and B. Wirth. ESAIM: Control, Optimisation and Calculus of Variations, 18(1):229–258, 2012. BibTeX PDF DOI

2011

  1. Joint ToF image denoising and registration with a CT surface in radiation therapy. S. Bauer, B. Berkels, J. Hornegger, and M. Rumpf. In Third International Conference on Scale Space Methods and Variational Methods in Computer Vision, Lecture Notes in Computer Science, 98–109. Springer, 2011. BibTeX PDF DOI
  2. Sulci detection in photos of the human cortex based on learned discriminative dictionaries. B. Berkels, M. Kotowski, M. Rumpf, and C. Schaller. In Third International Conference on Scale Space Methods and Variational Methods in Computer Vision, Lecture Notes in Computer Science, 326–337. Springer, 2011. BibTeX PDF DOI
  3. Risk averse shape optimization. S. Conti, H. Held, M. Pach, M. Rumpf, and R. Schultz. SIAM Journal on Control and Optimization, 49(3):927–947, 2011. BibTeX PDF DOI
  4. A convergent finite volume scheme for diffusion on evolving surfaces. M. Lenz, S. F. Nemadjieu, and M. Rumpf. SIAM Journal on Numerical Analysis, 49(1):15–37, 2011. BibTeX PDF DOI
  5. 3D composite finite elements for elliptic boundary value problems with discontinuous coefficients. T. Preusser, M. Rumpf, S. Sauter, and L. O. Schwen. SIAM Journal on Scientific Computing, 33(5):2115–2143, 2011. BibTeX PDF DOI
  6. An elasticity-based covariance analysis of shapes. M. Rumpf and B. Wirth. Int. J. Comput. Vis., 92(3):281–295, 2011. BibTeX PDF DOI
  7. Variational methods in shape analysis. M. Rumpf and B. Wirth. In O. Scherzer, editor, Handbook of Mathematical Methods in Imaging, pages 1363–1401. Springer, 2011. BibTeX PDF DOI
  8. A continuum mechanical approach to geodesics in shape space. B. Wirth, L. Bar, M. Rumpf, and G. Sapiro. Int. J. Comput. Vis., 93(3):293–318, 2011. BibTeX PDF DOI

2010

  1. An SL(2){SL}(2) invariant shape median. B. Berkels, G. Linkmann, and M. Rumpf. Journal of Mathematical Imaging and Vision, 37(2):85–97, 2010. BibTeX PDF DOI
  2. Convex relaxation for grain segmentation at atomic scale. M. Boerdgen, B. Berkels, M. Rumpf, and D. Cremers. In D. Fellner, editor, Vision, Modeling and Visualization, 179–186. Eurographics Association, 2010. BibTeX PDF DOI
  3. Interactive motion segmentation. C. Nieuwenhuis, B. Berkels, M. Rumpf, and D. Cremers. In 32nd DAGM Symposium on Pattern Recognition, volume 6376 of Lecture Notes in Computer Science, 483–492. Springer, 2010. BibTeX PDF DOI
  4. Numerical homogenization of trabecular bone specimens using composite finite elements. M. Rumpf, L. O. Schwen, H.-J. Wilke, and U. Wolfram. In Multiphysics Simulations – Advanced Methods for Industrial Engineering, 127–143. Fraunhofer, Multi-Science Publishing, 2010. BibTeX PDF
  5. Restoring three-dimensional magnetic resonance angiography images with mean curvature motion. C. Schlimper, O. Nemitz, U. Dorenbeck, J. Scorzin, R. Whitaker, T. Tasdizen, M. Rumpf, and K. Schaller. Neurological Research, 32(1):87–93, 2010. BibTeX DOI

2009

  1. Reconstructing optical flow fields by motion inpainting. B. Berkels, C. Kondermann, C. Garbe, and M. Rumpf. In 7th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, volume 5681 of Lecture Notes in Computer Science, 388–400. Springer, 2009. BibTeX PDF DOI
  2. Shape optimization under uncertainty - a stochastic programming perspective. S. Conti, H. Held, M. Pach, M. Rumpf, and R. Schultz. SIAM Journal on Optimization, 19(4):1610–1632, 2009. BibTeX PDF DOI
  3. Mumford-Shah based registration: a comparison of a level set and a phase field approach. M. Droske, W. Ring, and M. Rumpf. Computing and Visualization in Science, 12:101–114, 2009. BibTeX PDF DOI
  4. Composite finite elements for 3D image based computing. F. Liehr, T. Preusser, M. Rumpf, S. Sauter, and L. O. Schwen. Computing and Visualization in Science, 12(4):171–188, April 2009. BibTeX PDF DOI
  5. Finite element methods on very large, dynamic tubular grid encoded implicit surfaces. O. Nemitz, M. B. Nielsen, M. Rumpf, and R. Whitaker. SIAM Journal on Scientific Computing, 31(3):2258–2281, 2009. BibTeX PDF DOI
  6. Two step time discretization of Willmore flow. N. Olischläger and M. Rumpf. In E. R. Hancock, R. R. Martin, and M. A. Sabin, editors, IMA Conference on the Mathematics of Surfaces, volume 5654 of Lecture Notes in Computer Science, 278–292. Springer, 2009. BibTeX PDF DOI
  7. Variational methods in image matching and motion extraction. M. Rumpf. In M. Burger and S. Osher, editors, Level Set and PDE based Reconstruction Methods: Applications to Inverse Problems and Image Processing, Lecture Notes in Mathematics. Springer, 2009. to appear as CIME course notes. BibTeX PDF
  8. A nonlinear elastic shape averaging approach. M. Rumpf and B. Wirth. SIAM J. Imaging Sci., 2(3):800–833, 2009. BibTeX PDF DOI
  9. An elasticity approach to principal modes of shape variation. M. Rumpf and B. Wirth. In Proc. of International Conference on Scale Space Methods and Variational Methods in Computer Vision, volume 5567 of Lecture Notes in Computer Science, 709–720. 2009. BibTeX PDF
  10. Composite finite elements for 3D elasticity with discontinuous coefficients. L. O. Schwen, T. Preusser, and M. Rumpf. In 16th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields. University of Ulm, 2009. to appear. BibTeX PDF
  11. Geodesics in shape space via variational time discretization. B. Wirth, L. Bar, M. Rumpf, and G. Sapiro. In Proc. of International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, volume 5681 of Lecture Notes in Computer Science, 288–302. 2009. BibTeX PDF DOI
  12. Statistical osteoporosis models using composite finite elements: a parameter study. U. Wolfram, L. O. Schwen, U. Simon, M. Rumpf, and H.-J. Wilke. Journal of Biomechanics, 42(13):2205–2209, September 2009. BibTeX PDF DOI

2008

  1. Mathematical Methods in Time Series Analysis and Digital Image Processing, chapter Inverse Problems and Parameter Identification in Image Processing, pages 111–151. J. F. Acker, B. Berkels, K. Bredies, M. S. Diallo, M. Droske, C. S. Garbe, M. Holschneider, J. Hron, C. Kondermann, M. Kulesh, P. Mass, N. Olischläger, H.-O. Peitgen, T. Preusser, M. Rumpf, K. Schaller, F. Scherbaum, and S. Turek. Understanding Complex Systems. Springer, 2008. BibTeX PDF DOI
  2. A shape median based on symmetric area differences. B. Berkels, G. Linkmann, and M. Rumpf. In O. Deussen, D. Keim, and D. Saupe, editors, Vision, Modeling and Visualization, 399–407. AKA Publishing, 2008. BibTeX PDF
  3. Extracting grain boundaries and macroscopic deformations from images on atomic scale. B. Berkels, A. Rätz, M. Rumpf, and A. Voigt. Journal of Scientific Computing, 35(1):1–23, April 2008. BibTeX PDF DOI
  4. Macroscopic behaviour of magnetic shape-memory polycrystals and polymer composites. S. Conti, M. Lenz, and M. Rumpf. In 7th European Symposium on Martensitic Transformations and Shape Memory Alloys, volume 481–482 of Materials Science and Engineering: A, 351–355. 2008. BibTeX PDF DOI
  5. Finite volume method on moving surfaces. M. Lenz, S. F. Nemadjieu, and M. Rumpf. In R. Eymard and J.-M. Hérald, editors, Finite Volumes for Complex Applications V, 561–576. Wiley, 2008. BibTeX PDF
  6. Determining effective elasticity parameters of microstructured materials. L. O. Schwen, U. Wolfram, H.-J. Wilke, and M. Rumpf. In 15th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields, 41–62. University of Ulm, 2008. BibTeX PDF

2007

  1. A variational framework for simultaneous motion estimation and restoration of motion-blurred video. L. Bar, B. Berkels, M. Rumpf, and G. Sapiro. In 11th IEEE International Conference on Computer Vision. IEEE, 2007. BibTeX PDF DOI
  2. Identification of grain boundary contours at atomic scale. B. Berkels, A. Rätz, M. Rumpf, and A. Voigt. In First International Conference on Scale Space Methods and Variational Methods in Computer Vision, volume 4485 of Lecture Notes in Computer Science, 765–776. Springer, 2007. BibTeX PDF DOI
  3. Modeling and simulation of magnetic shape-memory polymer composites. S. Conti, M. Lenz, and M. Rumpf. Journal of Mechanics and Physics of Solids, 55:1462–1486, 2007. BibTeX PDF DOI
  4. Mathematics - Key Technology for the Future, chapter Micro Structures in Thin Coating Layers: Micro Structure Evolution and Macroscopic Contact Angle. J. Dohmen, N. Grunewald, F. Otto, and M. Rumpf. Springer, 2007. BibTeX PDF
  5. Multi scale joint segmentation and registration of image morphology. M. Droske and M. Rumpf. IEEE Transactions on Pattern Recognition and Machine Intelligence, 29(12):2181–2194, 2007. BibTeX PDF
  6. A phase field method for joint denoising, edge detection and motion estimation. M. Droske, C. Garbe, T. Preußer, M. Rumpf, and A. Telea. SIAM Journal on Applied Mathematics, 68(3):599–618, 2007. BibTeX PDF DOI Link
  7. Mumford-Shah model for one-to-one edge matching. J. Han, B. Berkels, M. Droske, J. Hornegger, M. Rumpf, C. Schaller, J. Scorzin, and H. Urbach. IEEE Transactions on Image Processing, 16(11):2720–2732, November 2007. BibTeX PDF DOI
  8. Anisotropic curvature motion for structure enhancing smoothing of 3D MR angiography data. O. Nemitz, M. Rumpf, T. Tasdizen, and R. Whitaker. Journal of Mathematical Imaging and Vision, 27(3):217–229, 2007. BibTeX PDF DOI
  9. Narrow band methods for PDEs on very large implicit surfaces. O. Nemitz, M. B. Nielsen, M. Rumpf, and R. Whitaker. In H. P. A. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek, and J. Weickert, editors, Vision, Modeling and Visualization, 171–180. 2007. BibTeX PDF
  10. Finite element simulation of bone microstructures. T. Preusser, M. Rumpf, and L. O. Schwen. In 14th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields, 52–66. University of Ulm, 2007. BibTeX PDF

2006

  1. Cartoon extraction based on anisotropic image classification. B. Berkels, M. Burger, M. Droske, O. Nemitz, and M. Rumpf. In Vision, Modeling and Visualization, 293–300. AKA Publishing, 2006. BibTeX PDF
  2. Computational methods for nonlinear image registration. U. Clarenz, M. Droske, S. Henn, M. Rumpf, and K. Witsch. In O. Scherzer, editor, Mathematical Models for Registration and Applications to Medical Imaging, Mathematics in Industry, volume 10. 2006. BibTeX PDF
  3. A variational approach to joint denoising, edge detection and motion estimation. M. Droske, C. Garbe, T. Preußer, M. Rumpf, and A. Telea. In 28th DAGM Symposium on Pattern Recognition, volume 4174 of Lecture Notes in Computer Science, 525–535. Springer, 2006. BibTeX PDF
  4. Multiple scales in phase separating systems with elastic misfit. H. Garcke, M. Lenz, B. Niethammer, M. Rumpf, and U. Weikard. In A. Mielke, editor, Analysis, Modeling and Simulation of Multiscale Problems. Springer, 2006. BibTeX PDF Publisher
  5. A variational framework for joint image registration, denoising and edge detection. J. Han, B. Berkels, M. Rumpf, J. Hornegger, M. Droske, M. Fried, J. Scorzin, and C. Schaller. In Bildverarbeitung für die Medizin, 246–250. Springer, 2006. BibTeX PDF DOI
  6. 3d adaptive central schemes: part I. algorithms for assembling the dual mesh. S. Noelle, W. Rosenbaum, and M. Rumpf. Applied Numerical Mathematics, 56(6):778–799, 2006. BibTeX PDF

2005

  1. An adaptive level set method for interactive segmentation of intracranial tumors. M. Droske, M. Meyer, M. Rumpf, and C. Schaller. Neurosurgical Research, 27,Nr. 4:363–370, 2005. BibTeX PDF
  2. An image processing approach to surface matching. N. Litke, M. Droske, M. Rumpf, and P. Schröder. In Proc. of Eurographics Symposium on Geometry Processing, 207–216. 2005. BibTeX
  3. Analysis and numerics for conservation laws, chapter Multidimensional adaptive staggered grids, pages 479–493. S. Noelle, W. Rosenbaum, and M. Rumpf. Springer, Berlin, 2005. BibTeX
  4. Graphics processor units: new prospects for parallel computing. M. Rumpf and R. Strzodka. In Numerical Solution of Partial Differential Equations on Parallel Computers, pages 89–132. Springer, 2005. BibTeX

2004

  1. Towards a unified framework for scientific computing. P. Bastian, M. Droske, C. Engwer, R. Klöfkorn, T. Neubauer, M. Ohlberger, and M. Rumpf. In R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. Xu, editors, 15th International Conference on Domain Decomposition Methods, Vol. 40, Lecture notes in Computational Science and Engineering. 2004. BibTeX PDF
  2. A physical temperatur profiling method using gradient flows. B. Berkels, U. Clarenz, S. Crewell, U. Löhnert, M. Rumpf, and C. Simmer. In Microwave Radiometry and Remote Sensing Applications, Feb. 2004, Rome, Italy. 2004. BibTeX PDF
  3. A finite element method for surface restoration with smooth boundary conditions. U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, and R. Rusu. Computer Aided Geometric Design, 21(5):427–445, 2004. BibTeX PDF
  4. Processing textured surfaces via anisotropic geometric diffusion. U. Clarenz, U. Diewald, and M. Rumpf. IEEE Transactions on Image Processing, 13(2):248–261, 2004. BibTeX PDF
  5. A feature sensitive multiscale editing tool on surfaces. U. Clarenz, M. Griebel, M. Rumpf, A. Schweitzer, and A. Telea. Visual Computer, 29(5):329–343, 2004. BibTeX PDF
  6. Fairing of point based surfaces. U. Clarenz, M. Rumpf, and A. Telea. In Computer Graphics International, 600–603. 2004. BibTeX PDF
  7. Finite elements on point based surfaces. U. Clarenz, M. Rumpf, and A. Telea. In Eurographics Symposium of Point Based Graphics. 2004. BibTeX
  8. Robust feature detection and local classification for surfaces based on moment analysis. U. Clarenz, M. Rumpf, and A. Telea. IEEE Transactions on Visualization and Computer Graphics, 10(5):516–524, 2004. BibTeX PDF
  9. Surface processing methods for point sets using finite elements. U. Clarenz, M. Rumpf, and A. Telea. Computers & Graphics, 28(6):851–868, 2004. BibTeX
  10. On level set formulations for anisotropic mean curvature flow and surface diffusion. U. Clarenz, F. Haußer, M. Rumpf, A. Voigt, and U. Weikard. In A. Voigt, editor, Multiscale Modeling in Epitaxial Growth, volume 149 of International Series of Numerical Mathematics, 227–238. Birkhäuser, 2004. BibTeX PDF
  11. Axioms and variational problems in surface parameterization. U. Clarenz, N. Litke, and M. Rumpf. Comput. Aided Geom. Design, 21(8):727–749, 2004. BibTeX PDF
  12. A variational approach to non-rigid morphological registration. M. Droske and M. Rumpf. SIAM Journal on Applied Mathematics, 64(2):668–687, 2004. BibTeX PDF
  13. A level set formulation for Willmore flow. M. Droske and M. Rumpf. Interfaces and Free Boundaries, 6(3):361–378, 2004. BibTeX PDF
  14. Flow field clustering via algebraic multigrid. M. Griebel, T. Preußer, M. Rumpf, A. Schweitzer, and A. Telea. In Visualization. IEEE CS Press, 2004. BibTeX PDF
  15. Discretization and convergence for harmonic maps into trees. M. Hesse, M. Rumpf, and K.-T. Sturm. Calculus of Variations, 21:113–136, 2004. BibTeX PDF
  16. Image registration by a regularized gradient flow - a streaming implementation in DX9 graphics hardware. R. Strzodka, M. Droske, and M. Rumpf. Computing, 73(4):373–389, 2004. BibTeX PDF

2003

  1. A multiscale fairing method for textured surfaces. U. Clarenz, U. Diewald, and M. Rumpf. In H.-C. Hege and K. Polthier, editors, Visualization and Mathematics III, 245–260. Heidelberg, 2003. Springer-Verlag. BibTeX
  2. On generalized mean curvature flow in surface processing. U. Clarenz, G. Dziuk, and M. Rumpf. In H. Karcher and S. Hildebrandt, editors, Geometric analysis and nonlinear partial differential equations, 217–248. Springer, 2003. BibTeX PDF
  3. Non-rigid morphological registration and its practical issues. M. Droske, M. Rumpf, and C. Schaller. In IEEE International Conference on Image Processing, II: 699–702. 2003. BibTeX PDF
  4. Transient coarsening behaviour in the Cahn-Hilliard model. H. Garcke, B. Niethammer, M. Rumpf, and U. Weikard. Acta Materialia, 51(10):2823–2830, 2003. BibTeX PDF
  5. Multiresolution visualization of higher order adaptive finite element simulations. B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and K. G. Siebert. Computing, 70(3):181–204, Jun 2003. BibTeX
  6. Morphological image sequence processing. K. Mikula, T. Preußer, and M. Rumpf. Computing and Visualization in Science, 6(4):197–209, 2003. BibTeX PDF
  7. Extracting motion velocities from 3D image sequences. T. Preußer and M. Rumpf. In SPIE Conference on Visualization and Data Analysis. 2003. BibTeX PDF
  8. Fast image registration in DX9 graphics hardware. R. Strzodka, M. Droske, and M. Rumpf. Journal of Medical Informatics and Technologies, 6:43–49, Nov 2003. BibTeX PDF
  9. Gradient flow registration - a streaming implementation in DX9 graphics hardware. R. Strzodka, M. Droske, and M. Rumpf. Technical Report, research center caesar, Jan 2003. BibTeX PDF

2002

  1. On space-time-adaptive convergent finite-element schemes for a general class of lubrication -type equations. J. Becker, G. Grün, and M. Rumpf. In World Congress on Computational Mechanics. 2002. BibTeX
  2. Numerical methods for fourth order nonlinear degenerate diffusion problems. J. Becker, G. Grün, M. Lenz, and M. Rumpf. Applications of Mathematics, 47(6):517–543, 2002. BibTeX DOI
  3. Towards fast non–rigid registration. U. Clarenz, M. Droske, and M. Rumpf. In Inverse Problems, Image Analysis and Medical Imaging, AMS Special Session Interaction of Inverse Problems and Image Analysis, volume 313, 67–84. AMS, 2002. BibTeX PDF
  4. Relations between optimization and gradient flow methods with applications to image registration. U. Clarenz, S. Henn, M. Rumpf, and K. Witsch. In GAMM Seminar on Multigrid and Related Methods for Optimisation Problems, 11–30. 2002. BibTeX PDF
  5. A cascadic geometric filtering approach to subdivision. U. Diewald, S. Morigi, and M. Rumpf. Computer Aided Geometric Design, 19:675–694, 2002. BibTeX PDF
  6. A finite volume scheme for surfactant driven thin film flow. G. Grün, M. Lenz, and M. Rumpf. In R. Herbin and D. Kröner, editors, Finite Volumes for Complex Applications III, 567–574. Hermes Penton Sciences, 2002. BibTeX PDF
  7. Real time image processing based on reconfigurablhimoe hardware acceleration. S. Klupsch, M. Ernst, S. A. Huss, M. Rumpf, and R. Strzodka. In Heterogeneous reconfigurable Systems on Chip. 2002. BibTeX PDF
  8. A level set method for anisotropic geometric diffusion in 3D image processing. T. Preußer and M. Rumpf. SIAM Journal on Applied Mathematics, 62(5):1772–1793, 2002. BibTeX PDF
  9. A continuous skeletonization method based on level sets. M. Rumpf and A. Telea. In Eurographics/IEEE TCVG Symposium on Visualization, 151–157. 2002. BibTeX

2001

  1. Transport and anisotropic diffusion in time-dependent flow visualization. D. Bürkle, T. Preußer, and M. Rumpf. In Visualization. 2001. BibTeX PDF
  2. On geometric evolution and cascadic multigrid in subdivision. U. Diewald, S. Morigi, and M. Rumpf. In T. Ertl, B. Girod, G. Greiner, H. Niemann, and H.-P. Seidel, editors, Vision, Modeling and Visualization, 67–75. 2001. BibTeX PDF
  3. Diffusion models and their accelerated solution in computer vision applications. U. Diewald, T. Preußer, M. Rumpf, and R. Strzodka. Acta Mathematica Universitatis Comenianae (AMUC), 70(1):15–31, 2001. BibTeX
  4. An adaptive level set method for medical image segmentation. M. Droske, B. Meyer, M. Rumpf, and C. Schaller. In R. Leahy and M. Insana, editors, Annual Symposium on Information Processing in Medical Imaging. Springer, Lecture Notes Computer Science, 2001. BibTeX PDF
  5. A phase field model for continuous clustering on vector fields. H. Garcke, T. Preußer, M. Rumpf, A. Telea, U. Weikard, and J. van Wijk. IEEE Transactions on Visualization and Computer Graphics, 7:230–241, 2001. BibTeX PDF
  6. The Cahn-Hilliard equation with elasticity, finite element approximation and qualitative analysis. H. Garcke, M. Rumpf, and U. Weikard. Interfaces and Free Boundaries, 3(1):101–118, 2001. BibTeX PDF
  7. Simulation of singularities and instabilities arising in thin film flow. G. Grün and M. Rumpf. European Journal of Applied Mathematics, 12:293–320, 2001. BibTeX
  8. On anisotropic geometric diffusion in 3D image processing and image sequence analysis. K. Mikula, T. Preußer, M. Rumpf, and F. Sgallari. In M. Kirkilionis, S. Krömker, R. Rannacher, and F. Tomi, editors, Trends in Nonlinear Analysis. 2001. BibTeX PDF
  9. Nonlinear diffusion in graphics hardware. M. Rumpf and R. Strzodka. In Eurographics/IEEE TCVG Symposium on Visualization, 75–84. 2001. BibTeX
  10. Using graphics cards for quantized fem computations. M. Rumpf and R. Strzodka. In VIIP Conference on Visualization and Image Processing. 2001. BibTeX PDF
  11. Level set segmentation in graphics hardware. R. Strzodka and M. Rumpf. In IEEE International Conference on Image Processing, 1103–1106. 2001. BibTeX PDF

2000

  1. Asspects on data analysis and visualization for complex dynamical systems. J. Becker, D. Bürkle, R.-T. Happe, T. Preußer, M. Rumpf, M. Spielberg, and R. Strzodka. In B. Fiedler, editor, Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, chapter Aspects on Data Analysis and Visualization for Complex Dynamical Systems. Springer, 2000. BibTeX
  2. PDE methods in flow simulation post processing. J. Becker, T. Preußer, and M. Rumpf. Computing and Visualization in Science, 3(3):159–167, 2000. BibTeX PDF
  3. Nonlinear anisotropic diffusion in surface processing. U. Clarenz, U. Diewald, and M. Rumpf. In B. H. T. Ertl and A. Varshney, editors, Visualization, 397–405. 2000. BibTeX PDF
  4. The computation of an unstable invariant set inside a cylinder containing a knotted flow. M. Dellnitz, O. Junge, M. Rumpf, and R. Strzodka. In B. Fiedler, K. Gröger, and J. Sprekels, editors, Equadiff, 1015–1020. World Scientific, 2000. BibTeX
  5. Anisotropic diffusion in vector field visualization on euclidean domains and surfaces. U. Diewald, T. Preußer, and M. Rumpf. IEEE Transactions on Visualization and Computer Graphics, 6(2):139–149, 2000. BibTeX PDF
  6. Visualization of principal curvature directions by anisotropic diffusion. U. Diewald and M. Rumpf. In B. Girod, G. Greiner, H. Niemann, and H.-P. Seidel, editors, Vision, Modeling and Visualization, 293–301. 2000. BibTeX PDF
  7. A multilevel segmentation method. M. Droske, T. Preußer, and M. Rumpf. In B. Girod, G. Greiner, H. Niemann, and H.-P. Seidel, editors, Vision, Modeling and Visualization, 327–336. 2000. BibTeX PDF
  8. A continuous clustering method for vector fields. H. Garcke, T. Preußer, M. Rumpf, A. Telea, U. Weikard, and J. Van Wijk. In Visualization, 351–358. IEEE Computer Society, 2000. BibTeX PDF
  9. Error Indicators for Multilevel Visualization and Computing on Nested Grids. T. Gerstner, M. Rumpf, and U. Weikard. Computers & Graphics, 24(3):363–373, 2000. (shortened version in Data Visualization '99, E. Gröller, H. Löffelmann, W. Ribarsky (eds), pp. 199-211, Springer, 1999, also as SFB 256 report 24, Univ. Bonn, 1999). BibTeX PostScript PDF DOI
  10. Nonnegativity preserving convergent schemes for the thin film equation. G. Grün and M. Rumpf. Numerische Mathematik, 87:113–152, 2000. BibTeX PDF
  11. An adaptive staggered grid scheme for conservation laws. S. Noelle, W. Rosenbaum, and M. Rumpf. In H. Freistühler and G. Warnecke, editors, Hyperbolic Problems: Theory, Numerics, Applications. Eighth International Conference, volume 141 of International Series of Numerical Mathematics, 775–784. Basel, 2000. Birkhäuser. BibTeX PDF
  12. An adaptive finite element method for large scale image processing. T. Preußer and M. Rumpf. Journal of Visual Communication and Image Representation, 11(2):183–195, 2000. BibTeX PDF DOI

1999

  1. Visualizing complicated dynamics. D. Bürkle, M. Dellnitz, O. Junge, M. Rumpf, and M. Spielberg. In Late Breaking Hot Topic Visualization 1999 Conference, 33–36. 1999. BibTeX PDF
  2. Multiresolutional parallel isosurface extraction based on tetrahedral bisection. T. Gerstner and M. Rumpf. In International Workshop on Volume Graphics. Springer, 1999. BibTeX PDF
  3. A procedural interface to hierarchical grids. T. Geßner, B. Haasdonk, R. Kende, M. Lenz, R. Neubauer, M. Metscher, M. Ohlberger, W. Rosenbaum, M. Rumpf, R. Schwörer, M. Spielberg, and U. Weikard. Technical Report, SFB 256, University Bonn, 1999. BibTeX PDF Link
  4. Entropy consistent finite volume schemes for the thin film equation. G. Grün and M. Rumpf. In D. H. R. Vilsmeier, F. Benkhaldoun, editor, Finite Volumes for Complex Applications II. Hermes Science Publications, Paris, 1999. BibTeX
  5. Adaptive projection operators in multiresolutional scientific visualization. M. Ohlberger and M. Rumpf. IEEE Transactions on Visualization and Computer Graphics, 5-1(4):74–94, 1999. BibTeX PDF
  6. Anisotropic nonlinear diffusion in flow visualization. T. Preußer and M. Rumpf. In Visualization. 1999. BibTeX PDF
  7. Recent numerical methods – a challenge for data analysis and visualization. M. Rumpf. Future Generation Computer Systems, 15(1):43–58, 1999. BibTeX

1998

  1. Interactive visualization of particle systems. A. Backes, A. Dahr, and M. Rumpf. In Computer Graphics International, 88–95. IEEE Computer Society, 1998. BibTeX
  2. Visualization of time-dependent velocity fields by texture transport. J. Becker and M. Rumpf. In Eurographics Scientific Visualization Workshop '98. Springer, 1998. BibTeX
  3. An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation. W. Dörfler and M. Rumpf. Mathematics of Computation, 67(224):1361–1382, 1998. BibTeX
  4. Optimal searching on hierarchical grids based on local coordinates. M. Metscher and M. Rumpf. In GAMM Seminar on Concepts of Numerical Software. Vieweg, 1998. BibTeX

1997

  1. Exploring invariant sets and invariant measures. M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf. Chaos, 7(2):221–228, 1997. BibTeX PDF
  2. Bernoulli's free boundary problem, qualitative theory and numerical approximation. M. Flucher and M. Rumpf. Journal für die reine und angewandte Mathematik, 486:165–204, 1997. BibTeX
  3. Efficient visualization of large scale data on hierarchical meshes. R. Neubauer, M. Ohlberger, M. Rumpf, and R. Schwörer. In W. Lefer and M. Grave, editors, Visualization in Scientific Computing, 125–138. Springer, 1997. BibTeX PDF
  4. Hierarchical and adaptive visualization on nested grids. M. Ohlberger and M. Rumpf. Computing, 59(4):365–385, 1997. BibTeX
  5. The equilibrium state of an elastic solid in an incompressible fluid flow. M. Rumpf. In J. G. Heywood and others, editors, Theory of the Navier-Stokes Equations, volume 47. World Scientific Publisher, 1997. BibTeX

1996

  1. Characterizing global features of simulation data by selected local icons. R. T. Happe and M. Rumpf. In Eurographics Workshop on Virtual environments and scientific visualization '96, 234–242. Springer, 1996. BibTeX
  2. A variational approach to optimal meshes. M. Rumpf. Numerische Mathematik, 72(4):523–540, 1996. BibTeX
  3. Functions defining arbitrary meshes, a flexible interface between numerical data and visualization routines. M. Rumpf, A. Schmidt, and K. Siebert. Comput. Graph. Forum, 15(2):129–141, 1996. BibTeX PDF

1995 and before

  1. Asynchronous local mesh adaption for domain decomposition methods. R. Kleinrensing and M. Rumpf. Technical Report Preprint 5, Mathematische Fakultät, Freiburg, 1995. BibTeX
  2. A concept for time-dependent processes. K. Polthier and M. Rumpf. In M. Göbel, H. Müller, and B. Urban, editors, Scientific Visualization. Springer, 1995. BibTeX PDF
  3. On a unified visualization approach for data from advanced numerical methods. M. Rumpf, A. Schmidt, and K. Siebert. In R. Scateni, J. Van Wijk, and P. Zanarini, editors, Visualization in Scientific Computing, 35–44. Springer, 1995. BibTeX
  4. Visualization of parallel data based on procedural access. M. Rumpf and B. Schupp. In Visualization and Mathematics, 197–ff. Springer, 1995. BibTeX
  5. Adapting meshes by deformation, numerical examples and applications. M. Rumpf. In GAMM Seminar on Fast Solvers for Flow Problems. Vieweg, 1994. BibTeX
  6. Visualization concepts for adaptive nonstationary flow. M. Rumpf and M. Wierse. In DFG Workshop on Visualisierung in Paderborn. World Scientific Publisher, 1994. BibTeX
  7. Visualization of finite elements and tools for numerical analysis. M. Geiben and M. Rumpf. In F. Post and A. H. Hin, editors, Advances in Scientific Visualization, pages 1–23. Springer, 1993. BibTeX
  8. Growth in apical meristems of plants, visualization tools and growth tensor methods. J. Nakielski and M. Rumpf. Technical Report 11, SFB 256, Bonn, 1992. BibTeX
  9. GRAPE, Eine interaktive Umgebung für Visualisierung und Numerik. M. Rumpf and A. Wierse. Informatik, Forschung und Entwicklung, 7:145–151, 1992. BibTeX
  10. WYSIWYO in differential geometry (what you see is where you operate). K. Polthier and M. Rumpf. In Eurographics Workshop on Computer Graphics and Mathematics, Genua. 1991. BibTeX